On the mixing property for hyperbolic systems

被引:47
作者
Babillot, M [1 ]
机构
[1] Univ Orleans, MAPMO, F-45067 Orleans 2, France
关键词
D O I
10.1007/BF02773153
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We describe an elementary argument from abstract ergodic theory that can be used to prove mixing of hyperbolic flows. We use this argument to prove the mixing property of product measures for geodesic flows on (not necessarily compact) negatively curved manifolds. We also show the mixing property for the measure of maximal entropy of a compact rank-one manifold.
引用
收藏
页码:61 / 76
页数:16
相关论文
共 25 条
[1]  
ANOSOV DV, 1967, P STEKLOV I MATH, V90
[2]  
Arnold V.I.., 1988, ERGODIC PROBLEMS CLA
[3]   AXIAL ISOMETRIES OF MANIFOLDS OF NONPOSITIVE CURVATURE [J].
BALLMANN, W .
MATHEMATISCHE ANNALEN, 1982, 259 (01) :131-144
[4]  
BALLMANN W, 1995, DMV SEM, V25
[5]  
Burns K., 1985, Ergodic Theory and Dynamical Systems, V5, P307, DOI 10.1017/S0143385700002935
[6]  
BURNS K, 1987, PUBL MATH-PARIS, V65, P35
[7]   Topology of the strong stable foliation [J].
DaL'bo, F .
ANNALES DE L INSTITUT FOURIER, 2000, 50 (03) :981-+
[8]  
Dal'Bo F, 2000, ISRAEL J MATH, V118, P109, DOI 10.1007/BF02803518
[9]  
EBERLEIN PB, 1996, GEOMETRY NONPOSITIVE
[10]   MIXING, COUNTING, AND EQUIDISTRIBUTION IN LIE-GROUPS [J].
ESKIN, A ;
MCMULLEN, C .
DUKE MATHEMATICAL JOURNAL, 1993, 71 (01) :181-209