Computing Hypergeometric Functions Rigorously

被引:26
作者
Johansson, Fredrik [1 ,2 ]
机构
[1] Inria Bordeaux Sud Ouest, 200 Ave Vieille Tour, F-33405 Talence, France
[2] Inst Math Bordeaux, Bordeaux, France
来源
ACM TRANSACTIONS ON MATHEMATICAL SOFTWARE | 2019年 / 45卷 / 03期
基金
欧洲研究理事会;
关键词
Hypergeometric functions; interval arithmetic; arbitrary-precision arithmetic; Bessel functions; orthogonal polynomials; automatic differentiation; MULTIPLE-PRECISION EVALUATION; FAST COMPUTATION; GAMMA-FUNCTION; INTEGRALS; BERNOULLI; COMPLEX; Z);
D O I
10.1145/3328732
中图分类号
TP31 [计算机软件];
学科分类号
081202 ; 0835 ;
摘要
We present an efficient implementation of hypergeometric functions in arbitrary-precision interval arithmetic. The functions F-0(1), F-1(1), F-2(1), and F-2(0) (or the Kummer U-function) are supported for unrestricted complex parameters and argument, and, by extension, we cover exponential and trigonometric integrals, error functions, Fresnel integrals, incomplete gamma and beta functions, Bessel functions, Airy functions, Legendre functions, Jacobi polynomials, complete elliptic integrals, and other special functions. The output can be used directly for interval computations or to generate provably correct floating-point approximations in any format. Performance is competitive with earlier arbitrary-precision software and sometimes orders of magnitude faster. We also partially cover the generalized hypergeometric function F-p(q) and computation of high-order parameter derivatives.
引用
收藏
页数:26
相关论文
共 89 条
[61]   Computing the confluent hypergeometric function, M(a,b,x) [J].
Muller, KE .
NUMERISCHE MATHEMATIK, 2001, 90 (01) :179-196
[62]   NUMERICAL EVALUATION OF THE CONFLUENT HYPERGEOMETRIC FUNCTION FOR COMPLEX ARGUMENTS OF LARGE MAGNITUDES [J].
NARDIN, M ;
PERGER, WF ;
BHALLA, A .
JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 1992, 39 (02) :193-200
[63]  
NIST, 2016, Digital Library of Mathematical Functions
[64]  
Olver F. W. J., 2010, NIST Handbook of Mathematical Functions
[65]  
Pearson J. W., 2014, ARXIV14077786
[66]  
Reignier J., 1999, PAINLEV PROPERTY
[67]  
Revol N., 2005, Reliable Computing, V11, P275, DOI 10.1007/s11155-005-6891-y
[68]  
Sage Developers, 2020, Sagemath, the sage mathematics software system (version 9.0)
[69]   Computing the gamma function using contour integrals and rational approximations [J].
Schmelzer, Thomas ;
Trefethen, Lloyd N. .
SIAM JOURNAL ON NUMERICAL ANALYSIS, 2007, 45 (02) :558-571
[70]  
Skorokhodov S. L., 2005, COMP MATH MATH PHYS, V45, P574