Polarization state-based refractive index sensing with plasmonic nanostructures

被引:25
作者
Liu, Shao-Ding [1 ,2 ]
Qi, Xin [1 ,2 ]
Zhai, Wu-Chao [1 ,2 ]
Chen, Zhi-Hui [1 ,2 ]
Wang, Wen-Jie [1 ,2 ]
Han, Jun-Bo [3 ]
机构
[1] Taiyuan Univ Technol, Minist Educ, Key Lab Adv Transducers & Intelligent Control Sys, Taiyuan 030024, Peoples R China
[2] Taiyuan Univ Technol, Dept Phys & Optoelect, Taiyuan 030024, Peoples R China
[3] Huazhong Univ Sci & Technol, Wuhan Natl High Magnet Field Ctr, Wuhan 430074, Peoples R China
基金
中国国家自然科学基金;
关键词
MACH-ZEHNDER INTERFEROMETER; FANO RESONANCES; HIGH-SPEED; SENSITIVITY; NANOPARTICLES; SPECTROSCOPY; FIGURE; ARRAYS; MERIT; METAMATERIALS;
D O I
10.1039/c5nr06336a
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Spectral-based methods are often used for label-free biosensing. However, practical implementations with plasmonic nanostructures suffer from a broad line width caused by strong radiative and nonradiative losses, and the sensing performance characterized by figure of merit is poor for these spectral-based methods. This study provides a polarization state-based method using plasmonic nanostructures to improve the sensing performance. Instead of the intensity spectrum, the polarization state of the transmitted field is monitored to analyze variations of the surrounding medium. The polarization state of incidence is strongly modified due to the excitation of surface plasmons, and the ellipticity of the transmitted field changes dramatically around plasmon resonances. Sharp resonances with line widths down to subnanometer are achieved by plotting the spectra of the reciprocal of ellipticity. Therefore, the sensing performance can be significantly improved, and a theoretical value of the figure of merit exceeding 1700 is achieved by using the polarization state-based sensing approach.
引用
收藏
页码:20171 / 20179
页数:9
相关论文
共 74 条
[1]   Cavity-Coupled Plasmonic Device with Enhanced Sensitivity and Figure-of-Merit [J].
Bahramipanah, Mohsen ;
Dutta-Gupta, Shourya ;
Abasahl, Banafsheh ;
Martin, Olivier J. F. .
ACS NANO, 2015, 9 (07) :7621-7633
[2]   Magnetic Plasmonic Fano Resonance at Optical Frequency [J].
Bao, Yanjun ;
Hu, Zhijian ;
Li, Ziwei ;
Zhu, Xing ;
Fang, Zheyu .
SMALL, 2015, 11 (18) :2177-2181
[3]   The Optimal Aspect Ratio of Gold Nanorods for Plasmonic Bio-sensing [J].
Becker, Jan ;
Truegler, Andreas ;
Jakab, Arpad ;
Hohenester, Ulrich ;
Soennichsen, Carsten .
PLASMONICS, 2010, 5 (02) :161-167
[4]   Optimal Polarization Conversion in Coupled Dimer Plasmonic Nanoantennas for Metasurfaces [J].
Black, Leo-Jay ;
Wang, Yudong ;
de Groot, C. H. ;
Arbouet, Arnaud ;
Muskens, Otto L. .
ACS NANO, 2014, 8 (06) :6390-6399
[5]   Fano Resonant Ring/Disk Plasmonic Nanocavities on Conducting Substrates for Advanced Biosensing [J].
Cetin, Arif E. ;
Altug, Hatice .
ACS NANO, 2012, 6 (11) :9989-9995
[6]   Plasmonic phase transition and phase retardation: essential optical characteristics of localized surface plasmon resonance [J].
Chen, Wen-Yu ;
Lin, Chun-Hung ;
Chen, Wei-Ting .
NANOSCALE, 2013, 5 (20) :9950-9956
[7]   Broadband High-Efficiency Half-Wave Plate: A Supercell-Based Plasmonic Metasurface Approach [J].
Ding, Fei ;
Wang, Zhuoxian ;
He, Sailing ;
Shalaev, Vladimir M. ;
Kildishev, Alexander V. .
ACS NANO, 2015, 9 (04) :4111-4119
[8]   Miniature plasmonic wave plates [J].
Drezet, Aurelien ;
Genet, Cyriaque ;
Ebbesen, Thomas W. .
PHYSICAL REVIEW LETTERS, 2008, 101 (04)
[9]   Self-Assembled Plasmonic Nanoparticle Clusters [J].
Fan, Jonathan A. ;
Wu, Chihhui ;
Bao, Kui ;
Bao, Jiming ;
Bardhan, Rizia ;
Halas, Naomi J. ;
Manoharan, Vinothan N. ;
Nordlander, Peter ;
Shvets, Gennady ;
Capasso, Federico .
SCIENCE, 2010, 328 (5982) :1135-1138
[10]   Removing a Wedge from a Metallic Nanodisk Reveals a Fano Resonance [J].
Fang, Zheyu ;
Cai, Junyi ;
Yan, Zhongbo ;
Nordlander, Peter ;
Halas, Naomi J. ;
Zhu, Xing .
NANO LETTERS, 2011, 11 (10) :4475-4479