Hermitian and skew hermitian forms over local rings

被引:2
作者
Cruickshank, James [1 ]
Quinlan, Rachel [1 ]
Szechtman, Fernando [2 ]
机构
[1] Natl Univ Ireland Galway, Sch Math Stat & Appl Math, Galway, Ireland
[2] Univ Regina, Dept Math & Stat, Regina, SK, Canada
基金
加拿大自然科学与工程研究理事会;
关键词
Local ring; Discrete valuation ring; Hermitian; Skew hermitian; SESQUILINEAR FORMS; QUADRATIC-FORMS; CONGRUENCE; MATRICES; FIELDS;
D O I
10.1016/j.laa.2018.04.009
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We investigate the structure of possibly degenerate epsilon-hermitian forms over local rings. We prove classification theorems in the cases where the ring is complete and either the form is nondegenerate or the ring is a discrete valuation ring. In the latter case we describe a complete set of invariants for such forms based on a generalisation of the classical notion of the radical of the form. (C) 2018 Elsevier Inc. All rights reserved.
引用
收藏
页码:147 / 161
页数:15
相关论文
共 14 条
[1]   HERMITIAN CATEGORIES, EXTENSION OF SCALARS AND SYSTEMS OF SESQUILINEAR FORMS [J].
Bayer-Fluckiger, Eva ;
First, Uriya A. ;
Moldovan, Daniel A. .
PACIFIC JOURNAL OF MATHEMATICS, 2014, 270 (01) :1-26
[2]   Sesquilinear forms over rings with involution [J].
Bayer-Fluckiger, Eva ;
Moldovan, Daniel Arnold .
JOURNAL OF PURE AND APPLIED ALGEBRA, 2014, 218 (03) :417-423
[3]   Non unimodular Hermitian forms [J].
BayerFluckiger, E ;
Fainsilber, L .
INVENTIONES MATHEMATICAE, 1996, 123 (02) :233-240
[4]   Congruence of symmetric matrices over local rings [J].
Cao, Yonglin ;
Szechtman, Fernando .
LINEAR ALGEBRA AND ITS APPLICATIONS, 2009, 431 (09) :1687-1690
[5]  
COHEN IS, 1946, T AM MATH SOC, V59, P54
[6]  
Dokovic DZ, 2003, MATH RES LETT, V10, P1
[7]  
Durfee William H., 1944, DUKE MATH J, V11, P687
[8]   HERMITIAN FORMS OVER LOCAL FIELDS [J].
JACOBOWITZ, R .
AMERICAN JOURNAL OF MATHEMATICS, 1962, 84 (03) :441-&
[9]  
Knus M.-A., 1991, FUNDAMENTAL PRINCIPL, V294
[10]  
Lam T-Y., 2004, Graduate Studies in Mathematics