Enhanced thermoelectric properties of CNT dispersed and Na-doped Bi2Ba2Co2Oy composites

被引:26
作者
Gao, Wenxian [1 ,2 ]
Chai, Huadou [1 ,2 ,3 ]
Wu, Fang [1 ,2 ]
Li, Xinjian [1 ,2 ]
Hu, Xing [1 ,2 ]
Song, Hongzhong [1 ,2 ]
机构
[1] Zhengzhou Univ, Minist Educ, Key Lab Mat Phys, Zhengzhou 450052, Peoples R China
[2] Zhengzhou Univ, Sch Phys & Engn, Zhengzhou 450052, Peoples R China
[3] Zhengzhou Normal Univ, Sch Phys & Elect Engn, Zhengzhou 450044, Peoples R China
关键词
Bi2Ba2Co2Oy ceramics; CNT dispersant; Na doping; Thermoelectric properties; PERFORMANCE; POWER;
D O I
10.1016/j.ceramint.2017.01.113
中图分类号
TQ174 [陶瓷工业]; TB3 [工程材料学];
学科分类号
0805 ; 080502 ;
摘要
The thermoelectric properties of Bi2Ba2Co2Oy and Bi1.975Na0.025Ba2Co2Oy+x wt% carbon nanotubes (CNT; x=0.00, 0.05, 0.10, 0.15, 0.5, and 1.0) ceramic samples synthesised by the solid-state reaction method were investigated from 300K to 950K. Na doping with a small amount played an important role in reducing resistivity and slightly reduced the Seebeck coefficients and the thermal conductivity. The CNT dispersant increased resistivity, but the thermal conductivity was reduced remarkably. In particular, the Bi1.975Na0.025Ba2Co2Oy+1.0wt% CNT sample exhibited an ultralow thermal conductivity of 0.39 W K-1 m(-1) at 923K. This was attributed to the point defects caused by Na doping and the interface scattering caused by the CNT dispersant. The combination of Na doping and CNT dispersion had better effects on thermoelectric properties. The Bi1.975Na0.025Ba2Co2Oy+0.5wt% CNT sample exhibited a better dimensionless figure of merit (ZT) value of 0.2 at 923K, which was improved by 78.2%, compared with the undoped Bi2Ba2Co2Oy sample.
引用
收藏
页码:5723 / 5727
页数:5
相关论文
共 17 条
[1]   Enhanced thermoelectric performance of CNT thin film p/n junctions doped with N-containing organic molecules [J].
Bark, Hyunwoo ;
Lee, Wonmok ;
Lee, Hyunjung .
MACROMOLECULAR RESEARCH, 2015, 23 (09) :795-801
[2]   Enhancement of thermoelectric properties by Na doping in Te-free p-type AgSbSe2 [J].
Cai, Songting ;
Liu, Zihang ;
Sun, Jianyong ;
Li, Rui ;
Fei, Weidong ;
Sui, Jiehe .
DALTON TRANSACTIONS, 2015, 44 (03) :1046-1051
[3]   Nanostructured thermoelectric materials: Current research and future challenge [J].
Chen, Zhi-Gang ;
Han, Guang ;
Yang, Lei ;
Cheng, Lina ;
Zou, Jin .
PROGRESS IN NATURAL SCIENCE-MATERIALS INTERNATIONAL, 2012, 22 (06) :535-549
[4]   Effect of Na doping on the Ca3Co4O9 thermoelectric performance [J].
Constantinescu, G. ;
Rasekh, Sh. ;
Torres, M. A. ;
Bosque, P. ;
Diez, J. C. ;
Madre, M. A. ;
Sotelo, A. .
CERAMICS INTERNATIONAL, 2015, 41 (09) :10897-10903
[5]   Enhancement of the high-temperature thermoelectric performance of Bi2Ba2Co2Ox ceramics [J].
Constantinescu, G. ;
Rasekh, Sh. ;
Torres, M. A. ;
Madre, M. A. ;
Diez, J. C. ;
Sotelo, A. .
SCRIPTA MATERIALIA, 2013, 68 (01) :75-78
[6]   Recent advances in CNT/graphene based thermoelectric polymer nanocomposite: A proficient move towards waste energy harvesting [J].
Dey, Abhijit ;
Bajpai, Om Prakash ;
Sikder, Arun K. ;
Chattopadhyay, Santanu ;
Khan, Md Abdul Shafeeuulla .
RENEWABLE & SUSTAINABLE ENERGY REVIEWS, 2016, 53 :653-671
[7]   Systematics in the thermopower of electron-doped layered manganites [J].
Fisher, B ;
Patlagan, L ;
Reisner, GM ;
Knizhnik, A .
PHYSICAL REVIEW B, 2000, 61 (01) :470-475
[8]  
He Q. L., 2015, MOD PHYS LETT B, V29, P1
[9]  
Kobayashi W., 2007, IEEE XPLOR C 2007 IN, P117
[10]   Carbon nanotubes enhanced Seebeck coefficient and power factor of rutile TiO2 [J].
Lai, Yao-Cheng ;
Tsai, Hsin-Jung ;
Hung, Chia-I ;
Fujishiro, Hiroyuki ;
Naito, Tomoyuki ;
Hsu, Wen-Kuang .
PHYSICAL CHEMISTRY CHEMICAL PHYSICS, 2015, 17 (12) :8120-8124