Bose-Einstein condensation and/or modulation of "displacements" in the two-state Bose-Hubbard model

被引:0
|
作者
Stasyuk, I., V [1 ]
Velychko, O. V. [1 ]
机构
[1] Natl Acad Sci Ukraine, Inst Condensed Matter Phys, 1 Svientsitskii St, UA-79011 Lvov, Ukraine
关键词
Bose-Hubbard model; hard-core bosons; Bose-Einstein condensates; phase transition; particle displacements; uniform and modulated ordering; OPTICAL LATTICES; CONDUCTIVITY; TRANSITION; SUPERFLUID; SYSTEMS; PHASES; ATOMS;
D O I
10.5488/CMP.21.23002
中图分类号
O469 [凝聚态物理学];
学科分类号
070205 ;
摘要
Instabilities resulting in Bose-Einstein condensation and/or modulation of "displacements" in a system of quantum particles described by a two-state Bose-Hubbard model (with an allowance for the interaction between particle displacements on different lattice sites) are investigated. A possibility of modulation, which doubles the lattice constant, as well as the uniform displacement of particles from equilibrium positions are studied. Conditions for realization of the mentioned instabilities and phase transitions into the SF phase and into the "ordered" phase with frozen displacements are analyzed. The behaviour of order parameters is investigated and phase diagrams of the system are calculated both analytically (ground state) and numerically (at non-zero temperatures). It is revealed that the SF phase can appear as an intermediate one between the normal and "ordered" phases, while a supersolid phase is thermodynamically unstable and does not appear. The relation of the obtained results to the lattices with the double-well local potentials is discussed.
引用
收藏
页码:1 / 17
页数:17
相关论文
共 50 条
  • [21] Generalized Bose-Einstein Condensation
    Mullin, William J.
    Sakhel, Asaad R.
    JOURNAL OF LOW TEMPERATURE PHYSICS, 2012, 166 (3-4) : 125 - 150
  • [22] Bose-Einstein Condensation of Erbium
    Aikawa, K.
    Frisch, A.
    Mark, M.
    Baier, S.
    Rietzler, A.
    Grimm, R.
    Ferlaino, F.
    PHYSICAL REVIEW LETTERS, 2012, 108 (21)
  • [23] Bose-Einstein Condensation in Microgravity
    van Zoest, T.
    Gaaloul, N.
    Singh, Y.
    Ahlers, H.
    Herr, W.
    Seidel, S. T.
    Ertmer, W.
    Rasel, E.
    Eckart, M.
    Kajari, E.
    Arnold, S.
    Nandi, G.
    Schleich, W. P.
    Walser, R.
    Vogel, A.
    Sengstock, K.
    Bongs, K.
    Lewoczko-Adamczyk, W.
    Schiemangk, M.
    Schuldt, T.
    Peters, A.
    Koenemann, T.
    Muentinga, H.
    Laemmerzahl, C.
    Dittus, H.
    Steinmetz, T.
    Haensch, T. W.
    Reichel, J.
    SCIENCE, 2010, 328 (5985) : 1540 - 1543
  • [24] Dynamical mean-field theory for the Bose-Hubbard model
    Hu, Wen-Jun
    Tong, Ning-Hua
    PHYSICAL REVIEW B, 2009, 80 (24):
  • [25] Spatio-Temporal Spreading of Correlations in the Bose-Hubbard Model
    Kennett, Malcolm P.
    Fitzpatrick, Matthew R. C.
    JOURNAL OF LOW TEMPERATURE PHYSICS, 2020, 201 (1-2) : 82 - 89
  • [26] Scaling property of the critical hopping parameters for the Bose-Hubbard model
    Teichmann, N.
    Hinrichs, D.
    EUROPEAN PHYSICAL JOURNAL B, 2009, 71 (02) : 219 - 223
  • [27] Superfluid drag in the two-component Bose-Hubbard model
    Sellin, Karl
    Babaev, Egor
    PHYSICAL REVIEW B, 2018, 97 (09)
  • [28] Difference in Bose-Einstein condensation of conserved and unconserved particles
    Yukalov, V. I.
    LASER PHYSICS, 2012, 22 (07) : 1145 - 1168
  • [29] Two-dimensional Bose-Hubbard model for helium on graphene
    Yu, Jiangyong
    Lauricella, Ethan
    Elsayed, Mohamed
    Shepherd, Kenneth
    Nichols, Nathan S.
    Lombardi, Todd
    Kim, Sang Wook
    Wexler, Carlos
    Vanegas, Juan M.
    Lakoba, Taras
    Kotov, Valeri N.
    Del Maestro, Adrian
    PHYSICAL REVIEW B, 2021, 103 (23)
  • [30] Dynamics of disordered states in the Bose-Hubbard model with confinement
    Yan, Mi
    Hui, Hoi-Yin
    Scarola, V. W.
    PHYSICAL REVIEW A, 2017, 95 (05)