Engineering High Affinity Protein-Protein Interactions Using a High-Throughput Microcapillary Array Platform

被引:12
作者
Lim, Sungwon [1 ]
Chen, Bob [1 ]
Kariolis, Mihalis S. [1 ]
Dimov, Ivan K. [2 ]
Baer, Thomas M. [3 ]
Cochran, Jennifer R. [1 ,4 ]
机构
[1] Stanford Univ, Dept Bioengn, 450 Serra Mall, Stanford, CA 94305 USA
[2] Stanford Univ, Inst Stem Cell Biol & Regenerat Med, 450 Serra Mall, Stanford, CA 94305 USA
[3] Stanford Univ, Stanford Photon Res Ctr, 450 Serra Mall, Stanford, CA 94305 USA
[4] Stanford Univ, Chem Engn, 450 Serra Mall, Stanford, CA 94305 USA
基金
美国国家科学基金会;
关键词
YEAST SURFACE DISPLAY; POLYPEPTIDE LIBRARIES; DIRECTED EVOLUTION; HUMAN-ANTIBODIES; PCR;
D O I
10.1021/acschembio.6b00794
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Affinity maturation of protein protein interactions requires iterative rounds of protein library generation and high-throughput screening to identify variants that bind with increased affinity to a target of interest. We recently developed a multipurpose protein engineering platform, termed mu SCALE (Microcapillary Single Cell Analysis and Laser Extraction). This technology enables high-throughput screening of libraries of millions of cell-expressing protein variants based on their binding properties or functional activity. Here, we demonstrate the first use of the mu SCALE platform for affinity maturation of a protein protein binding, interaction. In this proof-of-concept study, we engineered an extracellular domain of the Axl receptor tyrosine kinase to bind tighter to its ligand Gas6. Within 2 weeks, two iterative rounds of library generation and screening resulted in engineered Axl variants with a 50-fold decrease in kinetic dissociation rate, highlighting the use of mu SCALE as a new tool for directed evolution.
引用
收藏
页码:336 / 341
页数:6
相关论文
共 30 条
[1]   Inhibiting β-Secretase Activity in Alzheimer's Disease Cell Models with Single-Chain Antibodies Specifically Targeting APP [J].
Boddapati, Shanta ;
Levites, Yona ;
Sierks, Michael R. .
JOURNAL OF MOLECULAR BIOLOGY, 2011, 405 (02) :436-447
[2]   Optimal screening of surface-displayed polypeptide libraries [J].
Boder, ET ;
Wittrup, KD .
BIOTECHNOLOGY PROGRESS, 1998, 14 (01) :55-62
[3]   Yeast surface display for screening combinatorial polypeptide libraries [J].
Boder, ET ;
Wittrup, KD .
NATURE BIOTECHNOLOGY, 1997, 15 (06) :553-557
[4]  
Bornscheuer U., 2011, CURRENT PROTOCOLS PR
[5]   Isolating and engineering human antibodies using yeast surface display [J].
Chao, Ginger ;
Lau, Wai L. ;
Hackel, Benjamin J. ;
Sazinsky, Stephen L. ;
Lippow, Shaun M. ;
Wittrup, K. Dane .
NATURE PROTOCOLS, 2006, 1 (02) :755-768
[6]  
Chen B, 2016, NAT CHEM BIOL, V12, P76, DOI [10.1038/NCHEMBIO.1978, 10.1038/nchembio.1978]
[7]  
Cherf GM, 2015, METHODS MOL BIOL, V1319, P155, DOI 10.1007/978-1-4939-2748-7_8
[8]   Flow cytometric screening of cell-based libraries [J].
Daugherty, PS ;
Iverson, BL ;
Georgiou, G .
JOURNAL OF IMMUNOLOGICAL METHODS, 2000, 243 (1-2) :211-227
[9]   Yeast surface display for protein engineering and characterization [J].
Gai, S. Annie ;
Wittrup, K. Dane .
CURRENT OPINION IN STRUCTURAL BIOLOGY, 2007, 17 (04) :467-473
[10]  
GOODWIN DC, 1993, BIOTECHNIQUES, V15, P438