Operational momentum in large-number addition and subtraction by 9-month-olds

被引:83
作者
McCrink, Koleen [1 ]
Wynn, Karen [2 ]
机构
[1] Harvard Univ, Dept Psychol, Cambridge, MA 02138 USA
[2] Yale Univ, Dept Psychol, New Haven, CT 06520 USA
关键词
Infants; Number; Cognitive development; Mathematics; Numerical operations; Operational Momentum; REPRESENTATIONAL MOMENTUM; HUMAN INFANTS; DISCRIMINATION; DISABILITIES; MAGNITUDE; KNOWLEDGE; SYSTEMS; ADULTS; SENSE;
D O I
10.1016/j.jecp.2009.01.013
中图分类号
B844 [发展心理学(人类心理学)];
学科分类号
040202 ;
摘要
Recent studies on nonsymbolic arithmetic have illustrated that under conditions that prevent exact calculation, adults display a systematic tendency to overestimate the answers to addition problems and underestimate the answers to subtraction problems. It has been suggested that this operational momentum results from exposure to a culture-specific practice of representing numbers spatially; alternatively, the mind may represent numbers in spatial terms from early in development. In the current study, we asked whether operational momentum is present during infancy, prior to exposure to culture-specific representations of numbers. Infants (9-month-olds) were shown videos of events involving the addition or subtraction of objects with three different types of outcomes: numerically correct, too large, and too small. Infants looked significantly longer only at those incorrect outcomes that violated the momentum of the arithmetic operation (i.e., at too-large outcomes in subtraction events and too-small outcomes in addition events). The presence of operational momentum during infancy indicates developmental continuity in the underlying mechanisms used when operating over numerical representations. (C) 2009 Elsevier Inc. All rights reserved.
引用
收藏
页码:400 / 408
页数:9
相关论文
共 30 条
[1]   Non-symbolic arithmetic in adults and young children [J].
Barth, H ;
La Mont, K ;
Lipton, J ;
Dehaene, S ;
Kanwisher, N ;
Spelke, E .
COGNITION, 2006, 98 (03) :199-222
[2]   The development of ordinal numerical knowledge in infancy [J].
Brannon, EM .
COGNITION, 2002, 83 (03) :223-240
[3]   Familiarization in infants' perception of addition problems [J].
Clearfield, Melissa W. ;
Westfahl, Shannon May-Comyns .
JOURNAL OF COGNITION AND DEVELOPMENT, 2006, 7 (01) :27-43
[4]   Amount Versus Number: Infants' Use of Area and Contour Length to Discriminate Small Sets [J].
Clearfield, Melissa W. ;
Mix, Kelly S. .
JOURNAL OF COGNITION AND DEVELOPMENT, 2001, 2 (03) :243-260
[5]   Nonverbal arithmetic in humans: Light from noise [J].
Cordes, Sara ;
Gallistel, C. R. ;
Gelman, Rochel ;
Latham, Peter .
PERCEPTION & PSYCHOPHYSICS, 2007, 69 (07) :1185-1203
[6]   THE MENTAL REPRESENTATION OF PARITY AND NUMBER MAGNITUDE [J].
DEHAENE, S ;
BOSSINI, S ;
GIRAUX, P .
JOURNAL OF EXPERIMENTAL PSYCHOLOGY-GENERAL, 1993, 122 (03) :371-396
[7]   The representations underlying infants' choice of more: Object files versus analog magnitudes [J].
Feigenson, L ;
Carey, S ;
Hauser, M .
PSYCHOLOGICAL SCIENCE, 2002, 13 (02) :150-156
[8]   Core systems of number [J].
Feigenson, L ;
Dehaene, S ;
Spelke, E .
TRENDS IN COGNITIVE SCIENCES, 2004, 8 (07) :307-314
[9]   Infants' discrimination of number vs. continuous extent [J].
Feigenson, L ;
Carey, S ;
Spelke, E .
COGNITIVE PSYCHOLOGY, 2002, 44 (01) :33-66
[10]   REPRESENTATIONAL MOMENTUM [J].
FREYD, JJ ;
FINKE, RA .
JOURNAL OF EXPERIMENTAL PSYCHOLOGY-LEARNING MEMORY AND COGNITION, 1984, 10 (01) :126-132