Charge carrier transport across grain boundaries in graphene

被引:10
作者
Mendez, J. P. [1 ]
Arca, F. [2 ]
Ramos, J. [2 ]
Ortiz, M. [1 ]
Ariza, M. P. [2 ]
机构
[1] CALTECH, Div Engn & Appl Sci, Pasadena, CA 91125 USA
[2] Univ Seville, Escuela Tecn Super Ingn, Camino Descubrimientos Sn, Seville 41092, Spain
关键词
Graphene; Charge carrier transport; Grain boundaries; Dislocations; Landauer-Buttiker formalism; BAND-GAP;
D O I
10.1016/j.actamat.2018.05.019
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
We evaluate the charge carrier transmission across asymmetric grain boundaries (GB) in a graphene lattice within the Landauer-Btittiker formalism. We employ a tight-binding model for C-based materials that accounts for lattice strain introduced by topological defects, such as grain boundaries. In particular, we investigate electronic transmission across grain boundaries found to be stable up to high temperatures. Our calculations suggest that the introduction of GBs generally preserves the zero-transport gap property of pristine graphene. However, only some specific asymmetric GBs open a moderate transport gap, which can be as high as approximate to 1.15 eV. We find that the GBs that introduce a transport gap are characterized by the existence of a mismatch along the GB. Indeed, the magnitude of this mismatch appears to be the main structural variable that determines the transport gap size, with greater mismatch resulting in larger transport gaps. Finally, we find that the presence of GBs reduces considerably electron transmission, and less so hole transmission. (C) 2018 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.
引用
收藏
页码:199 / 206
页数:8
相关论文
共 44 条
[1]  
Bae S, 2010, NAT NANOTECHNOL, V5, P574, DOI [10.1038/nnano.2010.132, 10.1038/NNANO.2010.132]
[2]   Superior thermal conductivity of single-layer graphene [J].
Balandin, Alexander A. ;
Ghosh, Suchismita ;
Bao, Wenzhong ;
Calizo, Irene ;
Teweldebrhan, Desalegne ;
Miao, Feng ;
Lau, Chun Ning .
NANO LETTERS, 2008, 8 (03) :902-907
[3]   Strain-induced band-gap deformation of H/F passivated graphene and h-BN sheet [J].
Bhattacharya, A. ;
Bhattacharya, S. ;
Das, G. P. .
PHYSICAL REVIEW B, 2011, 84 (07)
[4]   Density-functional method for nonequilibrium electron transport -: art. no. 165401 [J].
Brandbyge, M ;
Mozos, JL ;
Ordejón, P ;
Taylor, J ;
Stokbro, K .
PHYSICAL REVIEW B, 2002, 65 (16) :1654011-16540117
[5]   Interplay between bending and stretching in carbon nanoribbons [J].
Cadelano, Emiliano ;
Giordano, Stefano ;
Colombo, Luciano .
PHYSICAL REVIEW B, 2010, 81 (14)
[6]   Nonlinear Elasticity of Monolayer Graphene [J].
Cadelano, Emiliano ;
Palla, Pier Luca ;
Giordano, Stefano ;
Colombo, Luciano .
PHYSICAL REVIEW LETTERS, 2009, 102 (23)
[7]   Black Phosphorus: Narrow Gap, Wide Applications [J].
Castellanos-Gomez, Andres .
JOURNAL OF PHYSICAL CHEMISTRY LETTERS, 2015, 6 (21) :4280-4291
[8]  
Datta S., 1997, Electronic Transport in Mesoscopic Systems, DOI DOI 10.1063/1.2807624
[9]  
Datta S., 2005, Quantum Transport: Atom to Transistor
[10]   Band gap opening of monolayer and bilayer graphene doped with aluminium, silicon, phosphorus, and sulfur [J].
Denis, Pablo A. .
CHEMICAL PHYSICS LETTERS, 2010, 492 (4-6) :251-257