Subordinated Langevin equations for anomalous diffusion in external potentials-Biasing and decoupled external forces

被引:38
作者
Eule, S. [1 ]
Friedrich, R. [2 ]
机构
[1] Max Planck Inst Dynam & Self Org, D-37073 Gottingen, Germany
[2] Univ Munster, Inst Theoret Phys, D-48149 Munster, Germany
关键词
DYNAMICS;
D O I
10.1209/0295-5075/86/30008
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
The role of external forces in systems exhibiting anomalous diffusion is discussed on the basis of the describing Langevin equations. Since there exist different possibilities to include the effect of an external field, the concept of biasing and decoupled external fields is introduced. Complementary to the recently established Langevin equations for anomalous diffusion in a time-dependent external force field (MAGDZIARZ M. et al., Phys. Rev. Lett., 101 (2008) 210601), the Langevin formulation of anomalous diffusion in a decoupled time-dependent force field is derived. Copyright (c) EPLA, 2009
引用
收藏
页数:6
相关论文
共 23 条
[1]  
[Anonymous], 1994, Aspects and Applications of the Random Walk
[2]  
Balescu R., 2005, SER PLASMA PHYS
[3]   Fractional Fokker-Planck equation, solution, and application [J].
Barkai, E .
PHYSICAL REVIEW E, 2001, 63 (04)
[4]   Levy flights in inhomogeneous media [J].
Brockmann, D ;
Geisel, T .
PHYSICAL REVIEW LETTERS, 2003, 90 (17) :4
[5]   Continuous-time random walks with internal dynamics and subdiffusive reaction-diffusion equations [J].
Eule, S. ;
Friedrich, R. ;
Jenko, F. ;
Sokolov, I. M. .
PHYSICAL REVIEW E, 2008, 78 (06)
[6]   LANGEVIN-EQUATIONS FOR CONTINUOUS-TIME LEVY FLIGHTS [J].
FOGEDBY, HC .
PHYSICAL REVIEW E, 1994, 50 (02) :1657-1660
[7]  
Gaspard P., 1998, Chaos, Scattering and Statistical Mechanics
[8]   Continuous-time random walk and parametric subordination in fractional diffusion [J].
Gorenflo, Rudolf ;
Mainardi, Francesco ;
Vivoli, Alessandro .
CHAOS SOLITONS & FRACTALS, 2007, 34 (01) :87-103
[9]   Non-Markovian stochastic resonance:: Three-state model of ion channel gating -: art. no. 061906 [J].
Goychuk, I ;
Hänggi, P ;
Vega, JL ;
Miret-Artés, S .
PHYSICAL REVIEW E, 2005, 71 (06)
[10]   Theory of non-Markovian stochastic resonance -: art. no. 021104 [J].
Goychuk, I ;
Hänggi, P .
PHYSICAL REVIEW E, 2004, 69 (02) :021104-1