Model predictive control of autonomous underwater vehicles for trajectory tracking with external disturbances

被引:83
作者
Yan, Zheping [1 ]
Gong, Peng [1 ]
Zhang, Wei [1 ]
Wu, Wenhua [1 ]
机构
[1] Harbin Engn Univ, Coll Automat, Harbin 150001, Heilongjiang, Peoples R China
基金
中国国家自然科学基金; 中央高校基本科研业务费专项资金资助;
关键词
Autonomous underwater vehicle; Fully-actuated system; Model predictive control; Trajectory tracking;
D O I
10.1016/j.oceaneng.2020.107884
中图分类号
U6 [水路运输]; P75 [海洋工程];
学科分类号
0814 ; 081505 ; 0824 ; 082401 ;
摘要
This paper designs a novel double closed-loop three-dimensional (3-D) trajectory tracking method based on model predictive control (MPC) for an autonomous underwater vehicle (AUV) under external disturbances. Different from the conventional model predictive control, the designed double closed-loop control can be divided into two stages: 1) the outer-loop controller generates the desired speed instruction and passes it to the inner-loop speed controller; 2) the inner-loop speed controller generates the available control inputs to ensure the whole closed-loop trajectory tracking. In the controller design stage, the actual constraints on system inputs and state are effectively considered. In order to ensure the smooth operation of AUV, the double closed-loop controller takes the control increments as the control inputs. In addition, the stability analysis based on Lyapunov method proves the nominal stability of the controller. Finally, simulation experiments are designed to verify the tracking performance of the AUV under external disturbances. The results show the effectiveness of the controller.
引用
收藏
页数:10
相关论文
共 27 条
  • [1] Design of a sliding mode controller for trajectory tracking problem of marine vessels
    Cheng, J.
    Yi, J.
    Zhao, D.
    [J]. IET CONTROL THEORY AND APPLICATIONS, 2007, 1 (01) : 233 - 237
  • [2] Vertical Water Column Survey in the Gulf of Mexico Using Autonomous Underwater Vehicle SOTAB-I
    Choyekh, Mandi
    Kato, Naomi
    Short, Timothy
    Ukita, Masahiro
    Yamaguchi, Yasuaki
    Senga, Hidetaka
    Yoshie, Muneo
    Tanaka, Toshinari
    Kobayashi, Eiichi
    Chiba, Hajime
    [J]. MARINE TECHNOLOGY SOCIETY JOURNAL, 2015, 49 (03) : 88 - 101
  • [3] Adaptive Neural Network Control of AUVs With Control Input Nonlinearities Using Reinforcement Learning
    Cui, Rongxin
    Yang, Chenguang
    Li, Yang
    Sharma, Sanjay
    [J]. IEEE TRANSACTIONS ON SYSTEMS MAN CYBERNETICS-SYSTEMS, 2017, 47 (06): : 1019 - 1029
  • [4] Neural Learning Control of Marine Surface Vessels With Guaranteed Transient Tracking Performance
    Dai, Shi-Lu
    Wang, Min
    Wang, Cong
    [J]. IEEE TRANSACTIONS ON INDUSTRIAL ELECTRONICS, 2016, 63 (03) : 1717 - 1727
  • [5] Learning from adaptive neural network output feedback control of uncertain ocean surface ship dynamics
    Dai, Shi-Lu
    Wang, Min
    Wang, Cong
    Li, Liejun
    [J]. INTERNATIONAL JOURNAL OF ADAPTIVE CONTROL AND SIGNAL PROCESSING, 2014, 28 (3-5) : 341 - 365
  • [6] Do KD, 2009, ADV IND CONTROL, P1
  • [7] SEMI-GLOBAL OUTPUT FEEDBACK TRACKING CONTROL FOR FULLY ACTUATED SHIPS
    Du, Jialu
    Yu, Shuanghe
    Zhao, Yongsheng
    Yu, Xinghuo
    [J]. ASIAN JOURNAL OF CONTROL, 2011, 13 (04) : 570 - 575
  • [8] Impact of Current Disturbances on AUV Docking: Model-Based Motion Prediction and Countering Approaches
    Fan, Shuangshuang
    Li, Bo
    Xu, Wen
    Xu, Yuanxin
    [J]. IEEE JOURNAL OF OCEANIC ENGINEERING, 2018, 43 (04) : 888 - 904
  • [9] Trajectory following and stabilization control of fully actuated AUV using inverse kinematics and self-tuning fuzzy PID
    Hammad, Mohanad M.
    Elshenawy, Ahmed K.
    El Singaby, M. I.
    [J]. PLOS ONE, 2017, 12 (07):
  • [10] Model-based adaptive control system for autonomous underwater vehicles
    Hassanein, Osama
    Anavatti, Sreenatha G.
    Shim, Hyungbo
    Ray, Tapabrata
    [J]. OCEAN ENGINEERING, 2016, 127 : 58 - 69