Evaluation of ZnO nanorod arrays with dandelion-like morphology as negative electrodes for lithium-ion batteries

被引:237
|
作者
Wang, Hongbo [1 ]
Pan, Qinmin [1 ]
Cheng, Yuexiang [1 ]
Zhao, Jianwei [2 ]
Yin, Geping [1 ]
机构
[1] Harbin Inst Technol, Sch Chem Engn & Technol, Harbin 150001, Peoples R China
[2] Nanjing Univ, Sch Chem & Chem Engn, Nanjing 210008, Peoples R China
基金
美国国家科学基金会;
关键词
ZnO nanorod arrays; Dandelion-like morphology; Hydrothermal synthesis; Negative electrodes; Lithium-ion batteries; ELECTROCHEMICAL PERFORMANCES; TEMPLATE SYNTHESIS; ANODE MATERIAL; STORAGE; COMPOSITE; CAPACITY;
D O I
10.1016/j.electacta.2008.11.019
中图分类号
O646 [电化学、电解、磁化学];
学科分类号
081704 ;
摘要
In this study, ZnO nanorod arrays have been evaluated for the negative electrodes of lithium-ion batteries. The ZnO nanorod arrays with dandelion-like morphology were directly grown on copper substrates by a hydrothermal synthesis process at 80 degrees C. X-ray diffraction, scanning electron microscopy. galvanostaric discharge-charge, and cyclic voltammetry were employed to characterize the structure and electrochemical property of the arrays. The array electrodes showed a stable capacity over 310 mAh g(-1) after 40 cycles, and good capacity retention as the anodes of lithium-ion batteries. It was believed that the unique dandelion-like binary-structure played an important role in the electrochemical performance of the array electrodes. The present finding opens the possibility to fabricate micro/nanometer hierarchical ZnO films that might be applied in lithium-ion batteries. (C) 2008 Elsevier Ltd. All rights reserved.
引用
收藏
页码:2851 / 2855
页数:5
相关论文
共 50 条
  • [21] Facile Synthesis of Hierarchical Dandelion-Like NiCo2O4 Microspheres and Their Lithium-Ion Battery Application
    Liu, Jun
    Liu, Chunping
    Ma, Zengsheng
    Ji, Shaomin
    Wang, Jinbin
    Zhou, Yichun
    MATERIALS FOCUS, 2013, 2 (01) : 39 - 43
  • [22] Bunched akaganeite nanorod arrays: Preparation and high-performance for flexible lithium-ion batteries
    Peng, Shaomin
    Yu, Lin
    Sun, Ming
    Cheng, Gao
    Lin, Ting
    Mo, Yudi
    Li, Zishan
    JOURNAL OF POWER SOURCES, 2015, 296 : 237 - 244
  • [23] A composite electrode model for lithium-ion batteries with silicon/graphite negative electrodes
    Ai, Weilong
    Kirkaldy, Niall
    Jiang, Yang
    Offer, Gregory
    Wang, Huizhi
    Wu, Billy
    JOURNAL OF POWER SOURCES, 2022, 527
  • [24] Graphene and Selected Derivatives as Negative Electrodes in Sodium- and Lithium-Ion Batteries
    Pramudita, James C.
    Pontiroli, Daniele
    Magnani, Giacomo
    Gaboardi, Mattia
    Ricco, Mauro
    Milanese, Chiara
    Brand, Helen E. A.
    Sharma, Neeraj
    CHEMELECTROCHEM, 2015, 2 (04): : 600 - 610
  • [25] Highly featured amorphous silicon nanorod arrays for high-performance lithium-ion batteries
    Soleimani-Amiri, Samaneh
    Tali, Seied Ali Safiabadi
    Azimi, Soheil
    Sanaee, Zeinab
    Mohajerzadeh, Shamsoddin
    APPLIED PHYSICS LETTERS, 2014, 105 (19)
  • [26] SiGe porous nanorod arrays as high-performance anode materials for lithium-ion batteries
    Yu, Jingxue
    Du, Ning
    Wang, Jiazheng
    Zhang, Hui
    Yang, Deren
    Yang, D. (mseyang@zju.edu.cn), 1600, Elsevier Ltd (577): : 564 - 568
  • [27] Chemical Prelithiation of Negative Electrodes in Ambient Air for Advanced Lithium-Ion Batteries
    Wang, Gongwei
    Li, Feifei
    Liu, Dan
    Zheng, Dong
    Luo, Yang
    Qu, Deyu
    Ding, Tianyao
    Qu, Deyang
    ACS APPLIED MATERIALS & INTERFACES, 2019, 11 (09) : 8699 - 8703
  • [28] SiGe porous nanorod arrays as high-performance anode materials for lithium-ion batteries
    Yu, Jingxue
    Du, Ning
    Wang, Jiazheng
    Zhang, Hui
    Yang, Deren
    JOURNAL OF ALLOYS AND COMPOUNDS, 2013, 577 : 564 - 568
  • [29] Reliable reference electrodes for lithium-ion batteries
    La Mantia, F.
    Wessells, C. D.
    Deshazer, H. D.
    Cui, Yi
    ELECTROCHEMISTRY COMMUNICATIONS, 2013, 31 : 141 - 144
  • [30] Aluminium Nanowire Electrodes for Lithium-Ion Batteries
    El Abedin, Sherif Zein
    Garsuch, Arnd
    Endres, Frank
    AUSTRALIAN JOURNAL OF CHEMISTRY, 2012, 65 (11) : 1529 - 1533