Conformal Newton-Hooke symmetry of Pais-Uhlenbeck oscillator

被引:51
作者
Andrzejewski, K. [1 ]
Galajinsky, A. [2 ,3 ]
Gonera, J. [1 ]
Masterov, I. [2 ]
机构
[1] Univ Lodz, Fac Phys & Appl Informat, Dept Comp Sci, PL-90236 Lodz, Poland
[2] Tomsk Polytech Univ, Phys Math Lab, Tomsk 634050, Russia
[3] Tomsk State Univ, Dept Phys, Tomsk 634050, Russia
关键词
REALIZATIONS;
D O I
10.1016/j.nuclphysb.2014.05.025
中图分类号
O412 [相对论、场论]; O572.2 [粒子物理学];
学科分类号
摘要
It is demonstrated that the Pais-Uhlenbeck oscillator in arbitrary dimension enjoys the l-conformal Newton-Hooke symmetry provided frequencies of oscillation form the arithmetic sequence omega(k) = (2k - 1)omega(1), where k = 1,..., n, and l is the half-integer 2n-1/2. The model is shown to be maximally superintegrable. A link to n decoupled isotropic oscillators is discussed and an interplay between the l-conformal Newton-Hooke symmetry and symmetries characterizing each individual isotropic oscillator is analyzed. (C) 2014 The Authors. Published by Elsevier B.V.
引用
收藏
页码:150 / 162
页数:13
相关论文
共 43 条
[1]   Intertwining operators for l-conformal Galilei algebras and hierarchy of invariant equations [J].
Aizawa, N. ;
Kimura, Y. ;
Segar, J. .
JOURNAL OF PHYSICS A-MATHEMATICAL AND THEORETICAL, 2013, 46 (40)
[2]   Chiral and real N=2 supersymmetric l-conformal Galilei algebras [J].
Aizawa, N. ;
Kuznetsova, Z. ;
Toppan, F. .
JOURNAL OF MATHEMATICAL PHYSICS, 2013, 54 (09)
[3]   N=2 Galilean superconformal algebras with a central extension [J].
Aizawa, N. .
JOURNAL OF PHYSICS A-MATHEMATICAL AND THEORETICAL, 2012, 45 (47)
[4]   On dynamical realizations of l-conformal Galilei groups [J].
Andrzejewski, K. ;
Gonera, J. ;
Kosinski, P. ;
Maslanka, P. .
NUCLEAR PHYSICS B, 2013, 876 (01) :309-321
[5]   Unitary representations of N-conformal Galilei group [J].
Andrzejewski, K. ;
Gonera, J. .
PHYSICAL REVIEW D, 2013, 88 (06)
[6]   Dynamical interpretation of nonrelativistic conformal groups [J].
Andrzejewski, K. ;
Gonera, J. .
PHYSICS LETTERS B, 2013, 721 (4-5) :319-322
[7]   Nonrelativistic conformal transformations in Lagrangian formalism [J].
Andrzejewski, K. ;
Gonera, J. ;
Kijanka-Dec, A. .
PHYSICAL REVIEW D, 2013, 87 (06)
[8]   Nonrelativistic conformal groups and their dynamical realizations [J].
Andrzejewski, K. ;
Gonera, J. ;
Maslanka, P. .
PHYSICAL REVIEW D, 2012, 86 (06)
[9]  
ANDRZEJEWSKI K, UNPUB
[10]   Euclidean Path Integral and Higher-Derivative Theories [J].
Andrzejewski, Krzysztof ;
Gonera, Joanna ;
Maslanka, Pawel .
PROGRESS OF THEORETICAL PHYSICS, 2011, 125 (02) :247-259