Mapping of a particular element using an absorption edge with an X-ray fluorescence imaging microscope

被引:12
|
作者
Yamamoto, K [1 ]
Watanabe, N [1 ]
Takeuchi, A [1 ]
Takano, H [1 ]
Aota, T [1 ]
Fukuda, M [1 ]
Aoki, S [1 ]
机构
[1] Univ Tsukuba, Inst Appl Phys, Tsukuba, Ibaraki 3058573, Japan
关键词
imaging; X-ray fluorescence; microscopes; Wolter-type mirrors;
D O I
10.1107/S0909049599014260
中图分类号
TH7 [仪器、仪表];
学科分类号
0804 ; 080401 ; 081102 ;
摘要
An X-ray fluorescence imaging microscope with a Welter-type objective mirror (magnification: 13) has been constructed at beamline 39XU of SPring-8. Monochromatic X-rays (Delta E/E similar or equal to 10(-4)) in the energy range 6-10 keV were used for X-ray fluorescence excitation of the specimens. Using two monochromatic X-rays above and below the absorption edge of a particular element, a two-dimensional image of the element could be obtained. As a result, two-dimensional element mapping of the test specimens (Cu, Co, Ni, Fe and Ti wires) and constituent minerals (Fe, Mn and Ti) of a rock specimen (a piemontite-quartz schist) became possible.
引用
收藏
页码:34 / 39
页数:6
相关论文
共 50 条
  • [21] Disilicide Diffusion Coating Inspection by Micro X-Ray Fluorescence Imaging
    Edward R. Doering
    George J. Havrilla
    Thomasin C. Miller
    Journal of Nondestructive Evaluation, 2004, 23 : 95 - 105
  • [22] Correlative organelle fluorescence microscopy and synchrotron X-ray chemical element imaging in single cells
    Roudeau, Stephane
    Carmona, Asuncion
    Perrin, Laura
    Ortega, Richard
    ANALYTICAL AND BIOANALYTICAL CHEMISTRY, 2014, 406 (27) : 6979 - 6991
  • [23] Correlative organelle fluorescence microscopy and synchrotron X-ray chemical element imaging in single cells
    Stéphane Roudeau
    Asuncion Carmona
    Laura Perrin
    Richard Ortega
    Analytical and Bioanalytical Chemistry, 2014, 406 : 6979 - 6991
  • [24] X-ray fluorescence imaging analysis of inscription provenance
    Powers, J.
    Smilgies, D. -M.
    Geil, E. C.
    Clinton, K.
    Dimitrova, N.
    Peachin, M.
    Thorne, R. E.
    JOURNAL OF ARCHAEOLOGICAL SCIENCE, 2009, 36 (02) : 343 - 350
  • [25] Imaging X-ray fluorescence spectroscopy: laboratory measurements
    Martin, AP
    Brunton, AN
    Fraser, GW
    Abbey, AF
    NUCLEAR INSTRUMENTS & METHODS IN PHYSICS RESEARCH SECTION A-ACCELERATORS SPECTROMETERS DETECTORS AND ASSOCIATED EQUIPMENT, 2001, 460 (2-3) : 316 - 325
  • [26] Medical applications of X-ray fluorescence for trace element research
    Borjesson, Jimmy
    Mattsson, Soren
    POWDER DIFFRACTION, 2007, 22 (02) : 130 - 137
  • [27] Retrieving images from tarnished daguerreotypes using X-ray fluorescence imaging with an X-ray micro beam with tunable energy
    Sham, Tsun-Kong
    Finfrock, Y. Zou
    Xiao, Qunfeng
    Bassnett, Sarah
    Feng, Renfei
    JOURNAL OF CULTURAL HERITAGE, 2024, 67 : 53 - 61
  • [28] Simultaneous X-ray fluorescence and K-edge CT imaging with photon-counting detectors
    Li, Liang
    Li, Ruizhe
    Zhang, Siyuan
    Chen, Zhiqiang
    DEVELOPMENTS IN X-RAY TOMOGRAPHY X, 2016, 9967
  • [29] Trends in hard X-ray fluorescence mapping: environmental applications in the age of fast detectors
    E. Lombi
    M. D. de Jonge
    E. Donner
    C. G. Ryan
    D. Paterson
    Analytical and Bioanalytical Chemistry, 2011, 400 : 1637 - 1644
  • [30] X-ray Fluorescence Computed Tomography (XFCT) Imaging with a Superfine Pencil Beam X-ray Source
    Romero, Ignacio O.
    Fang, Yile
    Lun, Michael
    Li, Changqing
    PHOTONICS, 2021, 8 (07)