A Method for Quantitative Analysis of Standard and High-Throughput qPCR Expression Data Based on Input Sample Quantity

被引:36
作者
Adamski, Mateusz G. [1 ,2 ]
Gumann, Patryk [3 ,4 ]
Baird, Alison E. [1 ]
机构
[1] Suny Downstate Med Ctr, Brooklyn, NY 11203 USA
[2] UJCM, Krakow, Poland
[3] Harvard Univ, Dept Phys, Cambridge, MA 02138 USA
[4] Univ Waterloo, Inst Quantum Comp, Dept Phys & Astron, Waterloo, ON N2L 3G1, Canada
基金
美国国家卫生研究院;
关键词
REAL-TIME PCR; NEXT-GENERATION QPCR; GENE-EXPRESSION; HOUSEKEEPING GENES; BETA-ACTIN; RNA EXPRESSION; GAPDH;
D O I
10.1371/journal.pone.0103917
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Over the past decade rapid advances have occurred in the understanding of RNA expression and its regulation. Quantitative polymerase chain reactions (qPCR) have become the gold standard for quantifying gene expression. Microfluidic next generation, high throughput qPCR now permits the detection of transcript copy number in thousands of reactions simultaneously, dramatically increasing the sensitivity over standard qPCR. Here we present a gene expression analysis method applicable to both standard polymerase chain reactions (qPCR) and high throughput qPCR. This technique is adjusted to the input sample quantity (e. g., the number of cells) and is independent of control gene expression. It is efficiency-corrected and with the use of a universal reference sample (commercial complementary DNA (cDNA)) permits the normalization of results between different batches and between different instruments - regardless of potential differences in transcript amplification efficiency. Modifications of the input quantity method include (1) the achievement of absolute quantification and (2) a non-efficiency corrected analysis. When compared to other commonly used algorithms the input quantity method proved to be valid. This method is of particular value for clinical studies of whole blood and circulating leukocytes where cell counts are readily available.
引用
收藏
页数:7
相关论文
共 15 条
[1]   Next-Generation qPCR for the High-Throughput Measurement of Gene Expression in Multiple Leukocyte Subsets [J].
Adamski, Mateusz G. ;
Li, Yan ;
Wagner, Erin ;
Yu, Hua ;
Seales-Bailey, Chloe ;
Soper, Steven A. ;
Murphy, Michael ;
Baird, Alison E. .
JOURNAL OF BIOMOLECULAR SCREENING, 2013, 18 (09) :1008-1017
[2]   The MIQE Guidelines: Minimum Information for Publication of Quantitative Real-Time PCR Experiments [J].
Bustin, Stephen A. ;
Benes, Vladimir ;
Garson, Jeremy A. ;
Hellemans, Jan ;
Huggett, Jim ;
Kubista, Mikael ;
Mueller, Reinhold ;
Nolan, Tania ;
Pfaffl, Michael W. ;
Shipley, Gregory L. ;
Vandesompele, Jo ;
Wittwer, Carl T. .
CLINICAL CHEMISTRY, 2009, 55 (04) :611-622
[3]  
Chang TJ, 1998, ONCOL REP, V5, P469
[4]   Application of next generation qPCR and sequencing platforms to mRNA biomarker analysis [J].
Devonshire, Alison S. ;
Sanders, Rebecca ;
Wilkes, Timothy M. ;
Taylor, Martin S. ;
Foy, Carole A. ;
Huggett, Jim F. .
METHODS, 2013, 59 (01) :89-100
[5]   Validation of housekeeping genes for normalizing RNA expression in real-time PCR [J].
Dheda, K ;
Huggett, JF ;
Bustin, SA ;
Johnson, MA ;
Rook, G ;
Zumla, A .
BIOTECHNIQUES, 2004, 37 (01) :112-+
[6]   Peptidylprolyl isomerase A (PPIA) as a preferred internal control over GAPDH and β-actin in quantitative RNA analyses [J].
Feroze-Merzoug, F ;
Berquin, IM ;
Dey, J ;
Chen, YQ .
BIOTECHNIQUES, 2002, 32 (04) :776-+
[7]   An old method facing a new challenge: Re-visiting housekeeping proteins as internal reference control for neuroscience research [J].
Li, Rena ;
Shen, Yong .
LIFE SCIENCES, 2013, 92 (13) :747-751
[8]   Histological evidence: housekeeping genes beta-actin and GAPDH are of limited value for normalization of gene expression [J].
Lin, Juntang ;
Redies, Christoph .
DEVELOPMENT GENES AND EVOLUTION, 2012, 222 (06) :369-376
[9]   Progress Curve Analysis of qRT-PCR Reactions Using the Logistic Growth Equation [J].
Liu, Meile ;
Udhe-Stone, Claudia ;
Goudar, Chetan T. .
BIOTECHNOLOGY PROGRESS, 2011, 27 (05) :1407-1414
[10]   Analysis of relative gene expression data using real-time quantitative PCR and the 2-ΔΔCT method [J].
Livak, KJ ;
Schmittgen, TD .
METHODS, 2001, 25 (04) :402-408