Continuous Wavelet Transform and Uncertainty Principle Related to the Spherical Mean Operator

被引:10
作者
Rachdi, Lakhdar T. [1 ]
Meherzi, Fatma [1 ]
机构
[1] Univ Tunis El Manar, Fac Sci Tunis, Analyse Geometr & Harmon UR11ES23, Tunis 2092 2, Tunisia
关键词
Fourier transform; spherical mean operator; Plancherel formula; admissible wavelet; wavelet transform; uncertainty principle; INVERSION;
D O I
10.1007/s00009-016-0834-1
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we define and study the continuous wavelet transform associated with the spherical mean operator, we prove Plancherel formula, inversion formula, etc. Next we establish an analogue of Heisenberg's inequality for wavelet transform. Last, we study wavelet transform on subset of finite measures.
引用
收藏
页数:23
相关论文
共 50 条
[41]   BEST APPROXIMATION FOR WEIERSTRASS TRANSFORM CONNECTED WITH SPHERICAL MEAN OPERATOR [J].
Rachdi, L. T. ;
Msehli, N. .
ACTA MATHEMATICA SCIENTIA, 2012, 32 (02) :455-470
[42]   The Poisson Convolution Associated with the Spherical Mean Operator [J].
Amri, Besma .
COMPLEX ANALYSIS AND OPERATOR THEORY, 2023, 17 (05)
[43]   Heisenberg type uncertainty principle for continuous shearlet transform [J].
Su, Yu .
JOURNAL OF NONLINEAR SCIENCES AND APPLICATIONS, 2016, 9 (03) :778-786
[44]   Tighter Heisenberg-Weyl type uncertainty principle associated with quaternion wavelet transform [J].
Wang, Xinyu ;
Zheng, Shenzhou .
JOURNAL OF PSEUDO-DIFFERENTIAL OPERATORS AND APPLICATIONS, 2023, 14 (01)
[45]   On Benedicks-Amrein-Berthier uncertainty principles for continuous quaternion wavelet transform [J].
Wang, Xinyu ;
Zheng, Shenzhou .
MATHEMATICAL METHODS IN THE APPLIED SCIENCES, 2024, 47 (17) :13467-13484
[46]   Octonionic wavelet transform and uncertainly principle [J].
Ren, Guangbin ;
Zhao, Xin .
APPLIED MATHEMATICS AND COMPUTATION, 2025, 500
[47]   The Continuous Generalized Wavelet Transform Associated with q-Bessel Operator [J].
Dixit, M. M. ;
Pandey, C. P. ;
Das, D. .
BOLETIM SOCIEDADE PARANAENSE DE MATEMATICA, 2023, 41
[48]   The uncertainty principle for the octonion Fourier transform [J].
Zayed, Mohra ;
El Haoui, Youssef .
MATHEMATICAL METHODS IN THE APPLIED SCIENCES, 2023, 46 (02) :2651-2666
[49]   HARMONIC ANALYSIS AND UNCERTAINTY PRINCIPLES FOR INTEGRAL TRANSFORMS GENERALIZING THE SPHERICAL MEAN OPERATOR [J].
Hleili, Khaled ;
Omri, Slim ;
Rachdi, Lakhdar Tannech .
BULLETIN OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2012, 4 (01) :29-61
[50]   Tighter Heisenberg–Weyl type uncertainty principle associated with quaternion wavelet transform [J].
Xinyu Wang ;
Shenzhou Zheng .
Journal of Pseudo-Differential Operators and Applications, 2023, 14