Continuous Wavelet Transform and Uncertainty Principle Related to the Spherical Mean Operator

被引:10
作者
Rachdi, Lakhdar T. [1 ]
Meherzi, Fatma [1 ]
机构
[1] Univ Tunis El Manar, Fac Sci Tunis, Analyse Geometr & Harmon UR11ES23, Tunis 2092 2, Tunisia
关键词
Fourier transform; spherical mean operator; Plancherel formula; admissible wavelet; wavelet transform; uncertainty principle; INVERSION;
D O I
10.1007/s00009-016-0834-1
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we define and study the continuous wavelet transform associated with the spherical mean operator, we prove Plancherel formula, inversion formula, etc. Next we establish an analogue of Heisenberg's inequality for wavelet transform. Last, we study wavelet transform on subset of finite measures.
引用
收藏
页数:23
相关论文
共 50 条
[32]   Shapiro’s uncertainty principle and localization operators associated to the continuous wavelet transform [J].
Nadia Ben Hamadi ;
Haythem Lamouchi .
Journal of Pseudo-Differential Operators and Applications, 2017, 8 :35-53
[33]   Quantitative uncertainty principles for the Gabor spherical mean transform [J].
Chettaoui, Chirine ;
Hassini, Amina ;
Trimeche, Khalifa .
INTEGRAL TRANSFORMS AND SPECIAL FUNCTIONS, 2024, 35 (7-8) :380-402
[34]   Qualitative uncertainty principle for continuous modulated shearlet transform [J].
Bansal, Piyush ;
Kumar, Ajay ;
Bansal, Ashish .
ADVANCES IN OPERATOR THEORY, 2024, 9 (03)
[35]   A Variation of uncertainty principles for the continuous wavelet transform connected with the Riemann-Liouville operator [J].
Hleili, Khaled .
AFRIKA MATEMATIKA, 2023, 34 (04)
[36]   Logarithmic uncertainty principle, convolution theorem related to continuous fractional wavelet transform and its properties on a generalized Sobolev space [J].
Bahri, Mawardi ;
Ashino, Ryuichi .
INTERNATIONAL JOURNAL OF WAVELETS MULTIRESOLUTION AND INFORMATION PROCESSING, 2017, 15 (05)
[37]   CALDERON-REPRODUCING FORMULA FOR THE CONTINUOUS WAVELET TRANSFORM RELATED TO THE WEINSTEIN OPERATOR [J].
Hleili, Khaled ;
Hleili, Manel .
BULLETIN OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2018, 10 (04) :31-44
[38]   Lebedev-Skalskaya Transform Related Continuous Wavelet Transform [J].
Gupt, Ajay K. ;
Mandal, U. K. ;
Prasad, Akhilesh .
RESULTS IN MATHEMATICS, 2024, 79 (03)
[39]   SHAPIRO'S UNCERTAINTY PRINCIPLE RELATED TO THE WINDOWED FOURIER TRANSFORM ASSOCIATED WITH THE RIEMANN-LIOUVILLE OPERATOR [J].
Hammami, Aymen .
OPERATORS AND MATRICES, 2017, 11 (04) :1015-1032
[40]   Existence of uncertainty minimizers for the continuous wavelet transform [J].
Halvdansson, Simon ;
Olsen, Jan-Fredrik ;
Sochen, Nir ;
Levie, Ron .
MATHEMATISCHE NACHRICHTEN, 2023, 296 (03) :1156-1172