Sliding mode extremum seeking control based on improved invasive weed optimization for MPPT in wind energy conversion system

被引:46
作者
Hu, Lu [1 ]
Xue, Fei [2 ]
Qin, Zijian [3 ]
Shi, Jiying [4 ]
Qiao, Wen [4 ]
Yang, Wenjing [4 ]
Yang, Ting [4 ]
机构
[1] Yongchuan Power Supply Co, State Grid Chongqing Elect Power Co, Chongqing 402160, Peoples R China
[2] Ningxia Elect Power Co, Elect Power Res Inst, Yinchuan 750001, Ningxia Hui Aut, Peoples R China
[3] Laiwu Power Supply Co, State Grid Shandong Elect Power Co, Laiwu 271100, Shandong, Peoples R China
[4] Tianjin Univ, Smart Grid Key Lab, Minist Educ, Tianjin 300072, Peoples R China
基金
国家重点研发计划; 中国国家自然科学基金;
关键词
Wind energy conversion system (WECS); Maximum power point tracking; Sliding mode extremum seeking control; Improved invasive weed optimization; POWER POINT TRACKING; PARTICLE SWARM OPTIMIZATION; TURBINES; PERFORMANCE; EXTRACTION; SIMULATION;
D O I
10.1016/j.apenergy.2019.04.073
中图分类号
TE [石油、天然气工业]; TK [能源与动力工程];
学科分类号
0807 ; 0820 ;
摘要
The sliding mode extremum seeking control (SMESC) could track the maximum power point (MPP) of wind energy conversion system (WECS) without wind speed or wind turbine parameters. Inappropriate SMESC parameters would cause steady-state oscillation and increase tracking time. This paper proposed an improved invasive weed optimization (IIWO) to optimize the SMESC parameters. The algorithm developed a new stochastic reproductive strategy to enhance its robustness and simplify the coding. Meanwhile, IIWO optimized double parameters coordinately to replace traditional parameter setting methods of SMESC, which could make the parameters meet the different requirements simultaneously for high efficiency. Simulation results showed that proposed IIWO-SMESC method yielded a better transient response, steady-state stability, and robustness than traditional hill-climbing search (HCS) and SMESC method.
引用
收藏
页码:567 / 575
页数:9
相关论文
共 41 条
  • [1] Invasive weed optimization for model order reduction of linear MIMO systems
    Abu-Al-Nadi, Dia I.
    Alsmadi, Othman M. K.
    Abo-Hammour, Zaer S.
    Hawa, Mohammed F.
    Rahhal, Jamal S.
    [J]. APPLIED MATHEMATICAL MODELLING, 2013, 37 (06) : 4570 - 4577
  • [2] [Anonymous], DIANLI XITONG BAOHU
  • [3] [Anonymous], 2014, P 2014 AUSTRALASIAN
  • [4] Optimal tuning of PI controller using PSO optimization for indirect power control for DFIG based wind turbine with MPPT
    Bekakra Y.
    Attous D.B.
    [J]. International Journal of System Assurance Engineering and Management, 2014, 5 (3) : 219 - 229
  • [5] Biabani MAKA, 2016, 2016 INTERNATIONAL CONFERENCE ON ELECTRICAL, ELECTRONICS, AND OPTIMIZATION TECHNIQUES (ICEEOT), P1614, DOI 10.1109/ICEEOT.2016.7754957
  • [6] Design and Study on Sliding Mode Extremum Seeking Control of the Chaos Embedded Particle Swarm Optimization for Maximum Power Point Tracking in Wind Power Systems
    Chen, Jui-Ho
    Yau, Her-Terng
    Hung, Weir
    [J]. ENERGIES, 2014, 7 (03): : 1706 - 1720
  • [7] Multi-objective optimization of the building energy performance: A simulation-based approach by means of particle swarm optimization (PSO)
    Delgarm, N.
    Sajadi, B.
    Kowsary, F.
    Delgarm, S.
    [J]. APPLIED ENERGY, 2016, 170 : 293 - 303
  • [8] Dong Dong Luo, 2014, Advanced Materials Research, V1014, P211, DOI 10.4028/www.scientific.net/AMR.1014.211
  • [9] Maximum Power Point Tracking with Dichotomy and Gradient Method for Automobile Exhaust Thermoelectric Generators
    Fang, W.
    Quan, S. H.
    Xie, C. J.
    Tang, X. F.
    Wang, L. L.
    Huang, L.
    [J]. JOURNAL OF ELECTRONIC MATERIALS, 2016, 45 (03) : 1613 - 1624
  • [10] Extremum seeking with sliding mode gradient estimation and asymptotic regulation for a class of nonlinear systems
    Fu, Lina
    Oezguener, Uemit
    [J]. AUTOMATICA, 2011, 47 (12) : 2595 - 2603