Modeling DNA methylation dynamics with approaches from phylogenetics

被引:16
作者
Capra, John A. [1 ,2 ]
Kostka, Dennis [3 ,4 ]
机构
[1] Vanderbilt Univ, Ctr Human Genet Res, Nashville, TN 37232 USA
[2] Vanderbilt Univ, Dept Biomed Informat, Nashville, TN 37232 USA
[3] Univ Pittsburgh, Dept Dev Biol, Pittsburgh, PA 15201 USA
[4] Univ Pittsburgh, Dept Computat & Syst Biol, Pittsburgh, PA 15201 USA
关键词
CPG ISLANDS; DIFFERENTIATION;
D O I
10.1093/bioinformatics/btu445
中图分类号
Q5 [生物化学];
学科分类号
071010 ; 081704 ;
摘要
Motivation: Methylation of CpG dinucleotides is a prevalent epigenetic modification that is required for proper development in vertebrates. Genome-wide DNA methylation assays have become increasingly common, and this has enabled characterization of DNA methylation in distinct stages across differentiating cellular lineages. Changes in CpG methylation are essential to cellular differentiation; however, current methods for modeling methylation dynamics do not account for the dependency structure between precursor and dependent cell types. Results: We developed a continuous-time Markov chain approach, based on the observation that changes in methylation state over tissue differentiation can be modeled similarly to DNA nucleotide changes over evolutionary time. This model explicitly takes precursor to descendant relationships into account and enables inference of CpG methylation dynamics. To illustrate our method, we analyzed a high-resolution methylation map of the differentiation of mouse stem cells into several blood cell types. Our model can successfully infer unobserved CpG methylation states from observations at the same sites in related cell types (90% correct), and this approach more accurately reconstructs missing data than imputation based on neighboring CpGs (84% correct). Additionally, the single CpG resolution of our methylation dynamics estimates enabled us to show that DNA sequence context of CpG sites is informative about methylation dynamics across tissue differentiation. Finally, we identified genomic regions with clusters of highly dynamic CpGs and present a likely functional example. Our work establishes a framework for inference and modeling that is well suited to DNA methylation data, and our success suggests that other methods for analyzing DNA nucleotide substitutions will also translate to the modeling of epigenetic phenomena.
引用
收藏
页码:I408 / I414
页数:7
相关论文
共 25 条
[1]   DNA methylation dynamics in health and disease [J].
Bergman, Yehudit ;
Cedar, Howard .
NATURE STRUCTURAL & MOLECULAR BIOLOGY, 2013, 20 (03) :274-281
[2]   DNA Methylation Dynamics during In Vivo Differentiation of Blood and Skin Stem Cells [J].
Bock, Christoph ;
Beerman, Isabel ;
Lien, Wen-Hui ;
Smith, Zachary D. ;
Gu, Hongcang ;
Boyle, Patrick ;
Gnirke, Andreas ;
Fuchs, Elaine ;
Rossi, Derrick J. ;
Meissner, Alexander .
MOLECULAR CELL, 2012, 47 (04) :633-647
[3]   An integrated encyclopedia of DNA elements in the human genome [J].
Dunham, Ian ;
Kundaje, Anshul ;
Aldred, Shelley F. ;
Collins, Patrick J. ;
Davis, CarrieA. ;
Doyle, Francis ;
Epstein, Charles B. ;
Frietze, Seth ;
Harrow, Jennifer ;
Kaul, Rajinder ;
Khatun, Jainab ;
Lajoie, Bryan R. ;
Landt, Stephen G. ;
Lee, Bum-Kyu ;
Pauli, Florencia ;
Rosenbloom, Kate R. ;
Sabo, Peter ;
Safi, Alexias ;
Sanyal, Amartya ;
Shoresh, Noam ;
Simon, Jeremy M. ;
Song, Lingyun ;
Trinklein, Nathan D. ;
Altshuler, Robert C. ;
Birney, Ewan ;
Brown, James B. ;
Cheng, Chao ;
Djebali, Sarah ;
Dong, Xianjun ;
Dunham, Ian ;
Ernst, Jason ;
Furey, Terrence S. ;
Gerstein, Mark ;
Giardine, Belinda ;
Greven, Melissa ;
Hardison, Ross C. ;
Harris, Robert S. ;
Herrero, Javier ;
Hoffman, Michael M. ;
Iyer, Sowmya ;
Kellis, Manolis ;
Khatun, Jainab ;
Kheradpour, Pouya ;
Kundaje, Anshul ;
Lassmann, Timo ;
Li, Qunhua ;
Lin, Xinying ;
Marinov, Georgi K. ;
Merkel, Angelika ;
Mortazavi, Ali .
NATURE, 2012, 489 (7414) :57-74
[4]   Genomic variability within an organism exposes its cell lineage tree [J].
Frumkin, D ;
Wasserstrom, A ;
Kaplan, S ;
Feige, U ;
Shapiro, E .
PLOS COMPUTATIONAL BIOLOGY, 2005, 1 (05) :382-394
[5]  
Galtier N, 2005, STAT BIOL HEALTH, P3, DOI 10.1007/0-387-27733-1_1
[6]  
GU X, 1995, MOL BIOL EVOL, V12, P546
[7]  
Guttorp P., 1995, Stochastic Modeling of Scientific Data, V1st ed
[8]   Increased methylation variation in epigenetic domains across cancer types [J].
Hansen, Kasper Daniel ;
Timp, Winston ;
Bravo, Hector Corrada ;
Sabunciyan, Sarven ;
Langmead, Benjamin ;
McDonald, Oliver G. ;
Wen, Bo ;
Wu, Hao ;
Liu, Yun ;
Diep, Dinh ;
Briem, Eirikur ;
Zhang, Kun ;
Irizarry, Rafael A. ;
Feinberg, Andrew P. .
NATURE GENETICS, 2011, 43 (08) :768-U77
[9]   A Nearly Exhaustive Search for CpG Islands on Whole Chromosomes [J].
Hsieh, Fushing ;
Chen, Shu-Chun ;
Pollard, Katherine .
INTERNATIONAL JOURNAL OF BIOSTATISTICS, 2009, 5 (01)
[10]   CpG islands - 'A rough guide' [J].
Illingworth, Robert S. ;
Bird, Adrian P. .
FEBS LETTERS, 2009, 583 (11) :1713-1720