Z2 x Z2-graded supersymmetry: 2-d sigma models

被引:23
作者
Bruce, Andrew James [1 ]
机构
[1] Univ Luxembourg, Math Res Unit, Maison 6,Ave Fonte, L-4364 Esch Sur Alzette, Luxembourg
关键词
Z(2) x Z(2)-Lie algebras; supersymmetry; superspace; sigma models; GRADED LIE-ALGEBRA; MATRICES;
D O I
10.1088/1751-8121/abb47f
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We propose a natural Z(2) x Z(2)-graded generalisation of d = 2, N = (1, 1) supersymmetry and construct a Z(2)(2)-space realisation thereof. Due to the grading, the supercharges close with respect to, in the classical language, a commutator rather than an anticommutator. This is then used to build classical (linear and non-linear) sigma models that exhibit this novel supersymmetry via mimicking standard superspace methods. The fields in our models are bosons, right-handed and left-handed Majorana-Weyl spinors, and exotic bosons. The bosons commute with all the fields, the spinors belong to different sectors that cross commute rather than anticommute, while the exotic boson anticommute with the spinors. As a particular example of one of the models, we present a 'double-graded' version of supersymmetric sine-Gordon theory.
引用
收藏
页数:25
相关论文
共 40 条
[1]  
Aizawa N, 2020, EUR PHYS J C, V80, DOI 10.1140/epjc/s10052-020-8242-x
[2]   Z2n-graded extensions of supersymmetric quantum mechanics via Clifford algebras [J].
Aizawa, N. ;
Amakawa, K. ;
Doi, S. .
JOURNAL OF MATHEMATICAL PHYSICS, 2020, 61 (05)
[3]   N-extension of double-graded supersymmetric and superconformal quantum mechanics [J].
Aizawa, N. ;
Amakawa, K. ;
Doi, S. .
JOURNAL OF PHYSICS A-MATHEMATICAL AND THEORETICAL, 2020, 53 (06)
[4]  
Aizawa N., 2020, ARXIV200510759HEPTH
[5]  
Akulov V P, 1999, LECT NOTES PHYS, V524
[6]  
Aste A W, 2016, ADV STUD THEOR PHYS, V10, P125, DOI [10.12988/astp.2016.512116, DOI 10.12988/ASTP.2016.512116]
[7]   Products in the category of -manifolds [J].
Bruce, Andrew ;
Poncin, Norbert .
JOURNAL OF NONLINEAR MATHEMATICAL PHYSICS, 2019, 26 (03) :420-453
[8]   Double-graded supersymmetric quantum mechanics [J].
Bruce, Andrew James ;
Duplij, Steven .
JOURNAL OF MATHEMATICAL PHYSICS, 2020, 61 (06)
[9]   The Schwarz-Voronov Embedding of Z2n-Manifolds [J].
Bruce, Andrew James ;
Ibarguengoytia, Eduardo ;
Poncin, Norbert .
SYMMETRY INTEGRABILITY AND GEOMETRY-METHODS AND APPLICATIONS, 2020, 16
[10]   FUNCTIONAL ANALYTIC ISSUES IN Z2n-GEOMETRY [J].
Bruce, Andrew James ;
Poncin, Norbert .
REVISTA DE LA UNION MATEMATICA ARGENTINA, 2019, 60 (02) :611-636