THz-frequency magnon-phonon-polaritons in the collective strong-coupling regime

被引:47
作者
Sivarajah, Prasahnt [1 ]
Steinbacher, Andreas [1 ]
Dastrup, Blake [1 ]
Lu, Jian [1 ]
Xiang, Maolin [2 ,3 ]
Ren, Wei [2 ,3 ]
Kamba, Stanislav [4 ]
Cao, Shixun [2 ,3 ]
Nelson, Keith A. [1 ]
机构
[1] MIT, Dept Chem, Cambridge, MA 02139 USA
[2] Shanghai Univ, Dept Phys, Int Ctr Quantum & Mol Struct, Shanghai 200444, Peoples R China
[3] Shanghai Univ, Mat Genome Inst, Shanghai 200444, Peoples R China
[4] Acad Sci Czech Republ, Inst Phys, Na Slovance 2, Prague 18221 8, Czech Republic
基金
中国国家自然科学基金; 加拿大自然科学与工程研究理事会;
关键词
SINGLE QUANTUM-DOT; TEMPERATURE-DEPENDENCE; CAVITY; LINBO3; FIELD; PHOTONS; MODES; ATOMS; SUBWAVELENGTH; SCATTERING;
D O I
10.1063/1.5083849
中图分类号
O59 [应用物理学];
学科分类号
摘要
Strong coupling between light and matter occurs when the two interact such that new hybrid modes, the so-called polaritons, are formed. Here, we report on the strong coupling of both the electric and the magnetic degrees of freedom to an ultrafast terahertz (THz) frequency electromagnetic wave. In our system, optical phonons in a slab of ferroelectric lithium niobate are strongly coupled to a THz electric field to form phonon-polaritons, which are simultaneously strongly coupled to magnons in an adjacent slab of canted antiferromagnetic erbium orthoferrite via the magnetic-field component of the same THz pulse. We juxtapose experimental results of bare slabs consisting of the two materials with a photonic crystal cavity, consisting of a two-dimensional array of air holes cut into the hybrid slab. In both cases, the strong coupling leads to the formation of new magnon-phonon-polariton modes, which we experimentally observe in the time domain as a normal-mode beating and which corresponds in the frequency domain to an avoided crossing. Our simple yet versatile waveguide platform provides a promising avenue through which to explore ultrafast THz spintronics, quantum electrodynamics, sensing, and spectroscopic applications.
引用
收藏
页数:17
相关论文
共 84 条
[11]   MANIPULATION OF PHOTONS IN A CAVITY BY DISPERSIVE ATOM-FIELD COUPLING - QUANTUM-NONDEMOLITION MEASUREMENTS AND GENERATION OF SCHRODINGER CAT STATES [J].
BRUNE, M ;
HAROCHE, S ;
RAIMOND, JM ;
DAVIDOVICH, L ;
ZAGURY, N .
PHYSICAL REVIEW A, 1992, 45 (07) :5193-5214
[12]   Quantum rabi oscillation: A direct test of field quantization in a cavity [J].
Brune, M ;
Schmidt-Kaler, F ;
Maali, A ;
Dreyer, J ;
Hagley, E ;
Raimond, JM ;
Haroche, S .
PHYSICAL REVIEW LETTERS, 1996, 76 (11) :1800-1803
[13]   Mode structure of the L3 photonic crystal cavity [J].
Chalcraft, A. R. A. ;
Lam, S. ;
O'Brien, D. ;
Krauss, T. F. ;
Sahin, M. ;
Szymanski, D. ;
Sanvitto, D. ;
Oulton, R. ;
Skolnick, M. S. ;
Fox, A. M. ;
Whittaker, D. M. ;
Liu, H.-Y. ;
Hopkinson, M. .
APPLIED PHYSICS LETTERS, 2007, 90 (24)
[14]   Growth and surface morphology of ErFeO3 single crystal [J].
Chang, Fenfen ;
Yuan, Shujuan ;
Wang, Yabin ;
Zhan, Sheng ;
Cao, Shixun ;
Wu, Anhua ;
Xu, Jun .
JOURNAL OF CRYSTAL GROWTH, 2011, 318 (01) :932-935
[15]   Generation of high power tunable multicycle teraherz pulses [J].
Chen, Zhao ;
Zhou, Xibin ;
Werley, Christopher A. ;
Nelson, Keith A. .
APPLIED PHYSICS LETTERS, 2011, 99 (07)
[16]   NONLINEAR, ELASTIC, PIEZOELECTRIC, ELECTROSTRICTIVE, AND DIELECTRIC-CONSTANTS OF LITHIUM-NIOBATE [J].
CHO, Y ;
YAMANOUCHI, K .
JOURNAL OF APPLIED PHYSICS, 1987, 61 (03) :875-887
[17]   Self-Similar Nanocavity Design with Ultrasmall Mode Volume for Single-Photon Nonlinearities [J].
Choi, Hyeongrak ;
Heuck, Mikkel ;
Englund, Dirk .
PHYSICAL REVIEW LETTERS, 2017, 118 (22)
[18]   Direct detection of magnon spin transport by the inverse spin Hall effect [J].
Chumak, A. V. ;
Serga, A. A. ;
Jungfleisch, M. B. ;
Neb, R. ;
Bozhko, D. A. ;
Tiberkevich, V. S. ;
Hillebrands, B. .
APPLIED PHYSICS LETTERS, 2012, 100 (08)
[19]   IMPULSIVE STIMULATED RAMAN-SCATTERING EXPERIMENTS IN THE POLARITON REGIME [J].
DOUGHERTY, TP ;
WIEDERRECHT, GP ;
NELSON, KA .
JOURNAL OF THE OPTICAL SOCIETY OF AMERICA B-OPTICAL PHYSICS, 1992, 9 (12) :2179-2189
[20]   General recipe for designing photonic crystal cavities [J].
Englund, D ;
Fushman, I ;
Vuckovic, J .
OPTICS EXPRESS, 2005, 13 (16) :5961-5975