Genome-wide Association Studies in Maize: Praise and Stargaze

被引:266
|
作者
Xiao, Yingjie [1 ]
Liu, Haijun [1 ]
Wu, Liuji [2 ]
Warburton, Marilyn [3 ]
Yan, Jianbing [1 ]
机构
[1] Huazhong Agr Univ, Natl Key Lab Crop Genet Improvement, Wuhan 430070, Peoples R China
[2] Henan Agr Univ, Synerget Innovat Ctr Henan Grain Crops, Zhengzhou 450002, Peoples R China
[3] ARS, USDA, Corn Host Plant Resistance Res Unit, Box 9555, Mississippi, MS 39762 USA
基金
中国国家自然科学基金;
关键词
GWAS; omics; mixed model; population design; functional genomics; Zea mays; QUANTITATIVE TRAIT LOCI; LINEAR MIXED MODELS; RARE-VARIANT ASSOCIATION; EAR ROT RESISTANCE; CORN LEAF-BLIGHT; GENETIC ARCHITECTURE; DROUGHT TOLERANCE; COMPLEX TRAITS; LINKAGE DISEQUILIBRIUM; MISSING HERITABILITY;
D O I
10.1016/j.molp.2016.12.008
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Genome-wide association study (GWAS) has become a widely accepted strategy for decoding genotypephenotype associations in many species thanks to advances in next- generation sequencing (NGS) technologies. Maize is an ideal crop for GWAS and significant progress has been made in the last decade. This review summarizes current GWAS efforts in maize functional genomics research and discusses future prospects in the omics era. The general goal of GWAS is to link genotypic variations to corresponding differences in phenotype using the most appropriate statistical model in a given population. The current review also presents perspectives for optimizing GWAS design and analysis. GWAS analysis of data from RNA, protein, and metabolite- based omics studies is discussed, along with new models and new population designs that will identify causes of phenotypic variation that have been hidden to date. The joint and continuous efforts of the whole community will enhance our understanding of maize quantitative traits and boost crop molecular breeding designs.
引用
收藏
页码:359 / 374
页数:16
相关论文
共 50 条
  • [21] Genome-Wide Association Studies with a Genomic Relationship Matrix: A Case Study with Wheat and Arabidopsis
    Gianola, Daniel
    Fariello, Maria I.
    Naya, Hugo
    Schoen, Chris-Carolin
    G3-GENES GENOMES GENETICS, 2016, 6 (10): : 3241 - 3256
  • [22] Enhancing genomic prediction with genome-wide association studies in multiparental maize populations
    Bian, Y.
    Holland, J. B.
    HEREDITY, 2017, 118 (06) : 585 - 593
  • [23] Genome-Wide Association Studies of Autism
    Glessner J.T.
    Connolly J.J.
    Hakonarson H.
    Current Behavioral Neuroscience Reports, 2014, 1 (4) : 234 - 241
  • [24] Genome-Wide Association Studies in Atherosclerosis
    Sivapalaratnam, S.
    Motazacker, M. M.
    Maiwald, S.
    Hovingh, G. K.
    Kastelein, J. J. P.
    Levi, M.
    Trip, M. D.
    Dallinga-Thie, G. M.
    CURRENT ATHEROSCLEROSIS REPORTS, 2011, 13 (03) : 225 - 232
  • [25] Genome-Wide Association Studies in Atherosclerosis
    S. Sivapalaratnam
    M. M. Motazacker
    S. Maiwald
    G. K. Hovingh
    J. J. P. Kastelein
    M. Levi
    M. D. Trip
    G. M. Dallinga-Thie
    Current Atherosclerosis Reports, 2011, 13 : 225 - 232
  • [26] Trio Genome-Wide Association Studies
    Badini, Isabella
    Davies, Neil
    BEHAVIOR GENETICS, 2024, 54 (06) : 548 - 549
  • [27] Genome-Wide Association Studies and Beyond
    Witte, John S.
    ANNUAL REVIEW OF PUBLIC HEALTH, VOL 31, 2010, 31 : 9 - 20
  • [28] Genome-wide association analysis for grain moisture content and dehydration rate on maize hybrids
    Dong, Yuan
    Feng, Zhi-qian
    Ye, Fan
    Li, Ting
    Li, Guo-liang
    Li, Zhou-Shuai
    Hao, Yin-chuan
    Zhang, Xing-hua
    Liu, Wen-xin
    Xue, Ji-quan
    Xu, Shu-tu
    MOLECULAR BREEDING, 2023, 43 (01)
  • [29] phenosim - A software to simulate phenotypes for testing in genome-wide association studies
    Guenther, Torsten
    Gawenda, Inka
    Schmid, Karl J.
    BMC BIOINFORMATICS, 2011, 12
  • [30] Family-based genome-wide association studies
    Benyamin, B.
    Visscher, P. M.
    McRae, A. F.
    PHARMACOGENOMICS, 2009, 10 (02) : 181 - 190