Harmonic spinors on a family of Einstein manifolds

被引:5
作者
Franchetti, Guido [1 ]
机构
[1] Univ Torino, Dipartimento Matemat Giuseppe Peano, I-10123 Turin, Italy
关键词
Dirac structure; harmonic spinors; gravitational instantons; Einstein manifolds; GAUGE-THEORIES; METRICS; INDEX;
D O I
10.1088/1361-6544/aab0bd
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The purpose of this paper is to study harmonic spinors defined on a 1-parameter family of Einstein manifolds which includes Taub-NUT, Eguchi-Hanson and P-2(C) with the Fubini-Study metric as particular cases. We discuss the existence of and explicitly solve for spinors harmonic with respect to the Dirac operator twisted by a geometrically preferred connection. The metrics examined are defined, for generic values of the parameter, on a non-compact manifold with the topology of C-2 and extend to P-2(C) as edge-cone metrics. As a consequence, the subtle boundary conditions of the Atiyah-Patodi-Singer index theorem need to be carefully considered in order to show agreement between the index of the twisted Dirac operator and the result obtained by counting the explicit solutions.
引用
收藏
页码:2419 / 2441
页数:23
相关论文
共 37 条
[1]  
Abreu M, 2001, J DIFFER GEOM, V58, P151
[2]   Aspects of N=2 supersymmetric gauge theories in three dimensions [J].
Aharony, O ;
Hanany, A ;
Intriligator, K ;
Seiberg, N ;
Strassler, MJ .
NUCLEAR PHYSICS B, 1997, 499 (1-2) :67-99
[3]   3d dualities from 4d dualities [J].
Aharony, Ofer ;
Razamat, Shlomo S. ;
Seiberg, Nathan ;
Willett, Brian .
JOURNAL OF HIGH ENERGY PHYSICS, 2013, (07)
[4]   The Index of Dirac Operators on Incomplete Edge Spaces [J].
Albin, Pierre ;
Gell-Redman, Jesse .
SYMMETRY INTEGRABILITY AND GEOMETRY-METHODS AND APPLICATIONS, 2016, 12
[5]   Surgery and harmonic spinors [J].
Ammann, Bernd ;
Dahl, Mattias ;
Humbert, Emmanuel .
ADVANCES IN MATHEMATICS, 2009, 220 (02) :523-539
[6]   Geometric models of matter [J].
Atiyah, M. F. ;
Manton, N. S. ;
Schroers, B. J. .
PROCEEDINGS OF THE ROYAL SOCIETY A-MATHEMATICAL PHYSICAL AND ENGINEERING SCIENCES, 2012, 468 (2141) :1252-1279
[7]  
Atiyah M F, 2012, MATH P CAMB PHIL SOC, V155, P13
[8]   SPECTRAL ASYMMETRY AND RIEMANNIAN GEOMETRY .1. [J].
ATIYAH, MF ;
PATODI, VK ;
SINGER, IM .
MATHEMATICAL PROCEEDINGS OF THE CAMBRIDGE PHILOSOPHICAL SOCIETY, 1975, 77 (JAN) :43-69
[9]   Metrics with harmonic spinors [J].
Bar, C .
GEOMETRIC AND FUNCTIONAL ANALYSIS, 1996, 6 (06) :899-942
[10]  
Bar C., 1992, Ann. Global Anal. Geom, V10, P263