MTKDSR: Multi-Teacher Knowledge Distillation for Super Resolution Image Reconstruction

被引:2
作者
Yao, Gengqi [1 ]
Li, Zhan [1 ]
Bhanu, Bir [2 ]
Kang, Zhiqing [1 ]
Zhong, Ziyi [1 ]
Zhang, Qingfeng [1 ]
机构
[1] Jinan Univ, Dept Comp Sci, Guangzhou, Peoples R China
[2] Univ Calif Riverside, Dept Elect & Comp Engn, Riverside, CA USA
来源
2022 26TH INTERNATIONAL CONFERENCE ON PATTERN RECOGNITION (ICPR) | 2022年
基金
中国国家自然科学基金;
关键词
CONVOLUTIONAL NETWORK; SUPERRESOLUTION;
D O I
10.1109/ICPR56361.2022.9956250
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
In recent years, the performance of single image super-resolution (SISR) methods based on deep neural networks has significantly improved. However, large model sizes and high computational costs are common problems for most SR networks. Meanwhile, a trade-off exists between higher reconstruction fidelity and improved perceptual quality in solving the SISR problem. In this paper, we propose a multi-teacher knowledge distillation approach for SR (MTKDSR) tasks that can train a balanced, lightweight, and efficient student network using different types of teacher models that are proficient in terms of reconstruction fidelity or perceptual quality. In addition, to generate more realistic and learnable textures, we propose an edge-guided SR network, EdgeSRN, as a perceptual teacher used in the MTKDSR framework. In our experiments, EdgeSRN was superior to the models based on adversarial learning in terms of the ability of effective knowledge transfer. Extensive experiments show that the student trained by MTKDSR exhibit superior performance compared to those of state-of-the-art lightweight SR networks in terms of perceptual quality with a smaller model size and fewer computations. Our code is available at https: //github. com/lizhangray/MTKDSR.
引用
收藏
页码:352 / 358
页数:7
相关论文
共 50 条
  • [31] Single Image Super Resolution via Neighbor Reconstruction
    Zhang, Zhihong
    Xu, Zhuobin
    Ye, Zhiling
    Hu, Yiqun
    Cui, Lixin
    Bai, Lu
    STRUCTURAL, SYNTACTIC, AND STATISTICAL PATTERN RECOGNITION, S+SSPR 2018, 2018, 11004 : 406 - 415
  • [32] Survey of single image super-resolution reconstruction
    Li, Kai
    Yang, Shenghao
    Dong, Runting
    Wang, Xiaoying
    Huang, Jianqiang
    IET IMAGE PROCESSING, 2020, 14 (11) : 2273 - 2290
  • [33] Super-Resolution Reconstruction of Radio Tomographic Image
    Sun, Cheng
    Gao, Fei
    Liu, Heng
    2016 IEEE 83RD VEHICULAR TECHNOLOGY CONFERENCE (VTC SPRING), 2016,
  • [34] Image reconstruction with improved super-resolution algorithm
    Chen, CY
    Kuo, YC
    Fuh, CS
    INTERNATIONAL JOURNAL OF PATTERN RECOGNITION AND ARTIFICIAL INTELLIGENCE, 2004, 18 (08) : 1513 - 1527
  • [35] Order filters in super-resolution image reconstruction
    Trimeche, M
    Yrjänäinen, J
    IMAGE PROCESSING: ALGORITHMS AND SYSTEMS II, 2003, 5014 : 190 - 200
  • [36] SUPER-RESOLUTION RECONSTRUCTION OF IMAGE BASED ON PRIOR IMAGE CONSTRAINT
    Tang Bin-Bing
    Wang Zheng-Ming
    JOURNAL OF INFRARED AND MILLIMETER WAVES, 2008, 27 (05) : 389 - 392
  • [37] Super Resolution Image Reconstruction Based on Image Similarity and Feature Combination
    Zhan Y.
    Chi J.
    Ye Y.
    Zhang C.
    Huo W.
    Jisuanji Fuzhu Sheji Yu Tuxingxue Xuebao/Journal of Computer-Aided Design and Computer Graphics, 2019, 31 (06): : 1018 - 1029
  • [38] Mural Image Super Resolution Reconstruction Based on Multi-Scale Residual Attention Network
    Xu Zhigang
    Yan Juanjuan
    Zhu Honglei
    LASER & OPTOELECTRONICS PROGRESS, 2020, 57 (16)
  • [39] Learning-based Super-resolution Image Reconstruction on Multi-core Processor
    Goto, T.
    Kawamoto, Y.
    Sakuta, Y.
    Tsutsui, A.
    Sakurai, M.
    IEEE TRANSACTIONS ON CONSUMER ELECTRONICS, 2012, 58 (03) : 941 - 946
  • [40] Multi-level U-net network for image super-resolution reconstruction
    Han, Ning
    Zhou, Li
    Xie, Zhengmao
    Zheng, Jingli
    Zhang, Liuxin
    DISPLAYS, 2022, 73