MTKDSR: Multi-Teacher Knowledge Distillation for Super Resolution Image Reconstruction

被引:2
|
作者
Yao, Gengqi [1 ]
Li, Zhan [1 ]
Bhanu, Bir [2 ]
Kang, Zhiqing [1 ]
Zhong, Ziyi [1 ]
Zhang, Qingfeng [1 ]
机构
[1] Jinan Univ, Dept Comp Sci, Guangzhou, Peoples R China
[2] Univ Calif Riverside, Dept Elect & Comp Engn, Riverside, CA USA
来源
2022 26TH INTERNATIONAL CONFERENCE ON PATTERN RECOGNITION (ICPR) | 2022年
基金
中国国家自然科学基金;
关键词
CONVOLUTIONAL NETWORK; SUPERRESOLUTION;
D O I
10.1109/ICPR56361.2022.9956250
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
In recent years, the performance of single image super-resolution (SISR) methods based on deep neural networks has significantly improved. However, large model sizes and high computational costs are common problems for most SR networks. Meanwhile, a trade-off exists between higher reconstruction fidelity and improved perceptual quality in solving the SISR problem. In this paper, we propose a multi-teacher knowledge distillation approach for SR (MTKDSR) tasks that can train a balanced, lightweight, and efficient student network using different types of teacher models that are proficient in terms of reconstruction fidelity or perceptual quality. In addition, to generate more realistic and learnable textures, we propose an edge-guided SR network, EdgeSRN, as a perceptual teacher used in the MTKDSR framework. In our experiments, EdgeSRN was superior to the models based on adversarial learning in terms of the ability of effective knowledge transfer. Extensive experiments show that the student trained by MTKDSR exhibit superior performance compared to those of state-of-the-art lightweight SR networks in terms of perceptual quality with a smaller model size and fewer computations. Our code is available at https: //github. com/lizhangray/MTKDSR.
引用
收藏
页码:352 / 358
页数:7
相关论文
共 50 条
  • [21] A Novel Multi-frame Super Resolution algorithm for Surveillance Camera Image Reconstruction
    Khan, Aunsia
    Khan, Muhammad Aamir
    Obaid, Faisal
    Jadoon, Sultanullah
    Khan, Mudassar Ali
    Sikandar, Misba
    2015 FIRST INTERNATIONAL CONFERENCE ON ANTI-CYBERCRIME (ICACC), 2015, : 129 - 134
  • [22] Single image super-resolution reconstruction based on multi-directionality of the edge
    Liu, Jing
    Xue, Rui
    Li, Yuesong
    ELEVENTH INTERNATIONAL CONFERENCE ON DIGITAL IMAGE PROCESSING (ICDIP 2019), 2019, 11179
  • [23] A new denoising model for multi-frame super-resolution image reconstruction
    El Mourabit, Idriss
    El Rhabi, Mohammed
    Hakim, Abdelilah
    Laghrib, Amine
    Moreau, Eric
    SIGNAL PROCESSING, 2017, 132 : 51 - 65
  • [24] Blind multi-image super-resolution reconstruction with motion blur estimation
    Qin, Fengqing
    Information Technology Journal, 2013, 12 (19) : 4875 - 4881
  • [25] Super-Resolution Network with Information Distillation and Multi-Scale Attention for Medical CT Image
    Zhao, Tianliu
    Hu, Lei
    Zhang, Yongmei
    Fang, Jianying
    SENSORS, 2021, 21 (20)
  • [26] An Overview of Image Super-resolution Reconstruction Algorithm
    Niu, Xiaoming
    2018 11TH INTERNATIONAL SYMPOSIUM ON COMPUTATIONAL INTELLIGENCE AND DESIGN (ISCID), VOL 2, 2018, : 16 - 18
  • [27] Overview of Research on Image Super-Resolution Reconstruction
    Yu Mengbei
    Wang Hongjuan
    Liu Mengyang
    Li Pei
    2021 IEEE INTERNATIONAL CONFERENCE ON INFORMATION COMMUNICATION AND SOFTWARE ENGINEERING (ICICSE 2021), 2021, : 131 - 135
  • [28] Single Image Super Resolution via Neighbor Reconstruction
    Zhang, Zhihong
    Xu, Zhuobin
    Ye, Zhiling
    Hu, Yiqun
    Cui, Lixin
    Bai, Lu
    STRUCTURAL, SYNTACTIC, AND STATISTICAL PATTERN RECOGNITION, S+SSPR 2018, 2018, 11004 : 406 - 415
  • [29] Survey of single image super-resolution reconstruction
    Li, Kai
    Yang, Shenghao
    Dong, Runting
    Wang, Xiaoying
    Huang, Jianqiang
    IET IMAGE PROCESSING, 2020, 14 (11) : 2273 - 2290
  • [30] Single Image Super Resolution via Sparse Reconstruction
    Kruithof, Maarten C.
    van Eekeren, Adam W. M.
    Dijk, Judith
    Schutte, Klamer
    COMPRESSIVE SENSING, 2012, 8365