A global bifurcation theorem for critical values in Banach spaces

被引:0
作者
Amster, Pablo [1 ,2 ]
Benevieri, Pierluigi [3 ]
Haddad, Julian [4 ]
机构
[1] Univ Buenos Aires, Fac Ciencias Exactas & Nat, Dept Matemat, RA-1428 Buenos Aires, DF, Argentina
[2] IMAS CONICET, RA-1428 Buenos Aires, DF, Argentina
[3] Univ Sao Paulo, Inst Matemat & Estat, BR-05508090 Sao Paulo, Brazil
[4] Univ Fed Minas Gerais, ICEx, Dept Matemat, BR-30123970 Belo Horizonte, MG, Brazil
关键词
Global bifurcation; Critical values; Spectral flow;
D O I
10.1007/s10231-018-0797-x
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We present a global bifurcation result for critical values of C1 maps in Banach spaces. The approach is topological based on homotopy equivalence of pairs of topological spaces. For C2 maps, we prove a particular global bifurcation result, based on the notion of spectral flow.
引用
收藏
页码:773 / 794
页数:22
相关论文
共 30 条
[1]   Branching points for a class of variational operators [J].
Ambrosetti, A .
JOURNAL D ANALYSE MATHEMATIQUE, 1998, 76 (1) :321-335
[2]  
[Anonymous], 2002, GRADUATE STUDIES MAT
[3]   Landesman-Lazer conditions and quasilinear elliptic equations [J].
Arcoya, D ;
Orsina, L .
NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 1997, 28 (10) :1623-1632
[4]  
Arnold V. I., 2013, Mathematical methods of classical mechanics, V60
[5]   SPECTRAL ASYMMETRY AND RIEMANNIAN GEOMETRY .3. [J].
ATIYAH, MF ;
PATODI, VK ;
SINGER, IM .
MATHEMATICAL PROCEEDINGS OF THE CAMBRIDGE PHILOSOPHICAL SOCIETY, 1976, 79 (JAN) :71-99
[6]  
Benevieri P., 1998, Ann. Sci. Math. Que., V22, P131
[7]   A degree theory for a class of perturbed Fredholm maps [J].
Benevieri, Pierluigi ;
Calamai, Alessandro ;
Furi, Massimo .
FIXED POINT THEORY AND APPLICATIONS, 2005, 2005 (02) :185-206
[8]   A degree theory for locally compact perturbations of fredholm maps in Banach spaces [J].
Benevieri, Pierluigi ;
Furi, Massimo .
ABSTRACT AND APPLIED ANALYSIS, 2006,
[9]   SOLUTION TO BRANCHING EQUATIONS FOR NONLINEAR EIGENVALUE PROBLEMS [J].
BOHME, R .
MATHEMATISCHE ZEITSCHRIFT, 1972, 127 (02) :105-&
[10]  
Chang K., 2005, Methods in Nonlinear Analysis