Model-Driven Deep Learning for Massive Multiuser MIMO Constant Envelope Precoding

被引:12
作者
He, Yunfeng [1 ]
He, Hengtao [1 ]
Wen, Chao-Kai [2 ]
Jin, Shi [1 ]
机构
[1] Southeast Univ, Natl Mobile Commun Res Lab, Nanjing 210096, Peoples R China
[2] Natl Sun Yat Sen Univ, Inst Commun Engn, Kaohsiung 804, Taiwan
基金
美国国家科学基金会;
关键词
Precoding; Manifolds; Deep learning; MIMO communication; Unsupervised learning; Optimization; Backtracking; Massive MIMO; constant envelope; precoding; deep learning; model-driven; unsupervised learning; SYSTEMS;
D O I
10.1109/LWC.2020.3005027
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Constant envelope (CE) precoding design is of great interest for massive multiuser multi-input multi-output systems because it can significantly reduce hardware cost and power consumption. However, existing CE precoding algorithms are hindered by excessive computational overhead. In this letter, a novel model-driven deep learning (DL)-based network that combines DL with conjugate gradient algorithm is proposed for CE precoding. Specifically, the original iterative algorithm is unfolded and parameterized by trainable variables. With the proposed architecture, the variables can be learned efficiently from training data through unsupervised learning approach. Thus, the proposed network learns to obtain the search step size and adjust the search direction. Simulation results demonstrate the superiority of the proposed network in terms of multiuser interference suppression capability and computational overhead.
引用
收藏
页码:1835 / 1839
页数:5
相关论文
共 50 条
[21]   Beamspace Channel Estimation for Wideband Millimeter-Wave MIMO: A Model-Driven Unsupervised Learning Approach [J].
He, Hengtao ;
Wang, Rui ;
Jin, Weijie ;
Jin, Shi ;
Wen, Chao-Kai ;
Li, Geoffrey Ye .
IEEE TRANSACTIONS ON WIRELESS COMMUNICATIONS, 2023, 22 (03) :1808-1822
[22]   A Low-Complexity AoA-driven Multi-cell Constant Envelope Precoding for Massive MIMO Systems [J].
Mosleh, Marjan Abbasi ;
Shahabi, Seyyed MohammadMahdi ;
Ghasimi, Mohsen ;
Ardebilipour, Mehrdad .
2020 28TH IRANIAN CONFERENCE ON ELECTRICAL ENGINEERING (ICEE), 2020, :85-88
[23]   An Efficient Nonlinear Quantized Constant Envelope Precoding for Massive MU-MIMO Systems [J].
Liang, Rui ;
Li, Hui ;
Zhang, Wenjie ;
Liu, Chenxi ;
Guo, Yunling .
IEEE SYSTEMS JOURNAL, 2022,
[24]   Performance Comparison of Constant Envelope and Zero-Forcing Precoders in Multiuser Massive MIMO [J].
Brihuega, Alberto ;
Anttila, Lauri ;
Valkama, Mikko .
2018 IEEE WIRELESS COMMUNICATIONS AND NETWORKING CONFERENCE (WCNC), 2018,
[25]   Model-Driven Deep Learning for Hybrid Precoding in Millimeter Wave MU-MIMO System [J].
Jin, Weijie ;
Zhang, Jing ;
Wen, Chao-Kai ;
Jin, Shi .
IEEE TRANSACTIONS ON COMMUNICATIONS, 2023, 71 (10) :5862-5876
[26]   Model-Driven Deep Learning-Based MIMO-OFDM Detector: Design, Simulation, and Experimental Results [J].
Zhou, Xingyu ;
Zhang, Jing ;
Syu, Chen-Wei ;
Wen, Chao-Kai ;
Zhang, Jun ;
Jin, Shi .
IEEE TRANSACTIONS ON COMMUNICATIONS, 2022, 70 (08) :5193-5207
[27]   Data Augmentation Empowered Neural Precoding for Multiuser MIMO With MMSE Model [J].
Zhang, Shaoqing ;
Xu, Jindan ;
Xu, Wei ;
Wang, Ning ;
Ng, Derrick Wing Kwan ;
You, Xiaohu .
IEEE COMMUNICATIONS LETTERS, 2022, 26 (05) :1037-1041
[28]   A Framework for One-Bit and Constant-Envelope Precoding Over Multiuser Massive MISO Channels [J].
Shao, Mingjie ;
Li, Qiang ;
Ma, Wing-Kin ;
So, Anthony Man-Cho .
IEEE TRANSACTIONS ON SIGNAL PROCESSING, 2019, 67 (20) :5309-5324
[29]   Supervised Deep Learning for MIMO Precoding [J].
Pathapati, Aravind Ganesh ;
Chakradhar, Nakka ;
Havish, P. N. V. S. S. K. ;
Somayajula, Sai Ashish ;
Amuru, Saidhiraj .
2020 IEEE 3RD 5G WORLD FORUM (5GWF), 2020, :418-423
[30]   Model-Driven Learning for Generic MIMO Downlink Beamforming With Uplink Channel Information [J].
Zhang, Juping ;
You, Minglei ;
Zheng, Gan ;
Krikidis, Ioannis ;
Zhao, Liqiang .
IEEE TRANSACTIONS ON WIRELESS COMMUNICATIONS, 2022, 21 (04) :2368-2382