Model-Driven Deep Learning for Massive Multiuser MIMO Constant Envelope Precoding

被引:12
作者
He, Yunfeng [1 ]
He, Hengtao [1 ]
Wen, Chao-Kai [2 ]
Jin, Shi [1 ]
机构
[1] Southeast Univ, Natl Mobile Commun Res Lab, Nanjing 210096, Peoples R China
[2] Natl Sun Yat Sen Univ, Inst Commun Engn, Kaohsiung 804, Taiwan
基金
美国国家科学基金会;
关键词
Precoding; Manifolds; Deep learning; MIMO communication; Unsupervised learning; Optimization; Backtracking; Massive MIMO; constant envelope; precoding; deep learning; model-driven; unsupervised learning; SYSTEMS;
D O I
10.1109/LWC.2020.3005027
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Constant envelope (CE) precoding design is of great interest for massive multiuser multi-input multi-output systems because it can significantly reduce hardware cost and power consumption. However, existing CE precoding algorithms are hindered by excessive computational overhead. In this letter, a novel model-driven deep learning (DL)-based network that combines DL with conjugate gradient algorithm is proposed for CE precoding. Specifically, the original iterative algorithm is unfolded and parameterized by trainable variables. With the proposed architecture, the variables can be learned efficiently from training data through unsupervised learning approach. Thus, the proposed network learns to obtain the search step size and adjust the search direction. Simulation results demonstrate the superiority of the proposed network in terms of multiuser interference suppression capability and computational overhead.
引用
收藏
页码:1835 / 1839
页数:5
相关论文
共 16 条
[1]  
Absil PA, 2008, OPTIMIZATION ALGORITHMS ON MATRIX MANIFOLDS, P1
[2]  
Balamurali A, 2019, INT C ELECTR MACH SY, P2910, DOI 10.1109/icems.2019.8922333
[3]  
Balatsoukas-Stimming A., 2019, P IEEE INT WORKSH SI, P1
[4]   Low-PAPR Precoding Design for Massive Multiuser MIMO Systems via Riemannian Manifold Optimization [J].
Chen, Jung-Chieh .
IEEE COMMUNICATIONS LETTERS, 2017, 21 (04) :945-948
[5]   Improved Constant Envelope Multiuser Precoding for Massive MIMO Systems [J].
Chen, Jung-Chieh ;
Wen, Chao-Kai ;
Wong, Kai-Kit .
IEEE COMMUNICATIONS LETTERS, 2014, 18 (08) :1311-1314
[6]   Hybrid Precoding for Multiuser Millimeter Wave Massive MIMO Systems: A Deep Learning Approach [J].
Elbir, Ahmet M. ;
Papazafeiropoulos, Anastasios K. .
IEEE TRANSACTIONS ON VEHICULAR TECHNOLOGY, 2020, 69 (01) :552-563
[7]   Model-Driven Deep Learning for Physical Layer Communications [J].
He, Hengtao ;
Jin, Shi ;
Wen, Chao-Kai ;
Gao, Feifei ;
Li, Geoffrey Ye ;
Xu, Zongben .
IEEE WIRELESS COMMUNICATIONS, 2019, 26 (05) :77-83
[8]   Trainable ISTA for Sparse Signal Recovery [J].
Ito, Daisuke ;
Takabe, Satoshi ;
Wadayama, Tadashi .
IEEE TRANSACTIONS ON SIGNAL PROCESSING, 2019, 67 (12) :3113-3125
[9]  
Kingma DP., 2014, ACS SYM SER
[10]   Massive MIMO for Next Generation Wireless Systems [J].
Larsson, Erik G. ;
Edfors, Ove ;
Tufvesson, Fredrik ;
Marzetta, Thomas L. .
IEEE COMMUNICATIONS MAGAZINE, 2014, 52 (02) :186-195