Many-body representations for machine learning models of molecular properties

被引:0
|
作者
Huang, Bing [1 ]
von Lilienfeld, O. Anatole [1 ]
机构
[1] Univ Basel, Dept Chem, Basel, Switzerland
关键词
D O I
暂无
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
244
引用
收藏
页数:1
相关论文
共 50 条
  • [31] Many-Body Molecular Interactions in a Memristor
    Rath, Santi P.
    Thompson, Damien
    Goswami, Sreebrata
    Goswami, Sreetosh
    ADVANCED MATERIALS, 2023, 35 (37)
  • [32] Neural network representations of quantum many-body states
    Ying Yang
    HuaiXin Cao
    ZhanJun Zhang
    Science China Physics, Mechanics & Astronomy, 2020, 63
  • [33] Neural network representations of quantum many-body states
    Ying Yang
    HuaiXin Cao
    ZhanJun Zhang
    Science China(Physics,Mechanics & Astronomy), 2020, (01) : 59 - 73
  • [34] Efficient learning of many-body systems
    Chen, Sitan
    NATURE PHYSICS, 2024, 20 (06) : 899 - 900
  • [35] Machine-learning semilocal density functional theory for many-body lattice models at zero and finite temperature
    Nelson, James
    Tiwari, Rajarshi
    Sanvito, Stefano
    PHYSICAL REVIEW B, 2021, 103 (24)
  • [36] MANY-BODY FORCES AND THE MANY-BODY PROBLEM
    POLKINGHORNE, JC
    NUCLEAR PHYSICS, 1957, 3 (01): : 94 - 96
  • [37] Many-body physics and machine learning enabled discovery of promising solar materials
    Biswas, Tathagata
    Gupta, Adway
    Singh, Arunima K.
    RSC ADVANCES, 2025, 15 (11) : 8253 - 8261
  • [38] Editorial: Tensor network approaches for quantum many-body physics and machine learning
    Ran, Shi-Ju
    Zhao, Qibin
    Zhang, Peng
    Guo, Chu
    FRONTIERS IN PHYSICS, 2023, 11
  • [39] Approximating power of machine-learning ansatz for quantum many-body states
    Borin, Artem
    Abanin, Dmitry A.
    PHYSICAL REVIEW B, 2020, 101 (19)
  • [40] Finding the Dynamics of an Integrable Quantum Many-Body System via Machine Learning
    Wei, Victor
    Orfi, Alev
    Fehse, Felix
    Coish, William A.
    ADVANCED PHYSICS RESEARCH, 2024, 3 (01):