Online Graph Regularized Non-negative Matrix Factorization for Streamming Data

被引:0
作者
Liu, Fudong [1 ]
Guan, Naiyang [2 ]
Tang, Yuhua [1 ]
机构
[1] Natl Univ Def Technol, State Key Lab High Performance Comp, Changsha 410073, Hunan, Peoples R China
[2] Natl Univ Def Technol, Sch Comp, Changsha 410073, Hunan, Peoples R China
来源
2014 INTERNATIONAL CONFERENCE ON SECURITY, PATTERN ANALYSIS, AND CYBERNETICS (SPAC) | 2014年
关键词
nonnegative matrix factorization (NMF); graph regularized nonnegative matrix factorization (GNMF); online algorithm; large-scale datasets; MANIFOLD REGULARIZATION;
D O I
暂无
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Nonnegative matrix factorization (NMF) has been widely used to reduce dimensionality of data in image processing and various applications. Incorporating the geometric structure into NMF, graph regularized nonnegative matrix factorization (GNMF) has shown significant performance improvement in comparison to conventional NMF. However, both NMF and GNMF require the data matrix to reside in the memory, which gives rise to tremendous pressure for computation and storage. Moreover, this problem becomes serious if the datasets increase dramatically. In this paper, we propose an online GNMF (OGNMF) algorithm to process the incoming data in an incremental manner, i.e., OGNMF processes one data point or one chunk of data points one by one. By utilizing a smart buffering technique, OGNMF scales gracefully to large-scale datasets. Experimental results on text corpora demonstrate that OGNMF achieves better performance than the existing online NMF algorithms in terms of both accuracy and normalized mutual information, and outperforms the existing batch GNMF algorithms in terms of time overhead.
引用
收藏
页码:191 / 196
页数:6
相关论文
共 50 条
  • [1] Online graph regularized non-negative matrix factorization for large-scale datasets
    Liu, Fudong
    Yang, Xuejun
    Guan, Naiyang
    Yi, Xiaodong
    NEUROCOMPUTING, 2016, 204 : 162 - 171
  • [2] Graph Regularized Sparse Non-Negative Matrix Factorization for Clustering
    Deng, Ping
    Li, Tianrui
    Wang, Hongjun
    Wang, Dexian
    Horng, Shi-Jinn
    Liu, Rui
    IEEE TRANSACTIONS ON COMPUTATIONAL SOCIAL SYSTEMS, 2023, 10 (03) : 910 - 921
  • [3] Graph Regularized Projective Non-negative Matrix Factorization for Image Clustering
    Shi, Yuqing
    Wang, Weilan
    PROCEEDINGS OF THE 28TH CHINESE CONTROL AND DECISION CONFERENCE (2016 CCDC), 2016, : 413 - 416
  • [4] Discriminant Graph Regularized Non-negative Matrix Factorization (DGNMF) for Face Rrecognition
    Wan, Minghua
    Gai, Shan
    2ND INTERNATIONAL CONFERENCE ON COMMUNICATION AND TECHNOLOGY (ICCT 2015), 2015, : 93 - 101
  • [5] A locally weighted sparse graph regularized Non-Negative Matrix Factorization method
    Feng, Yinfu
    Xiao, Jun
    Zhou, Kang
    Zhuang, Yueting
    NEUROCOMPUTING, 2015, 169 : 68 - 76
  • [6] Image clustering by hyper-graph regularized non-negative matrix factorization
    Zeng, Kun
    Yu, Jun
    Li, Cuihua
    You, Jane
    Jin, Taisong
    NEUROCOMPUTING, 2014, 138 : 209 - 217
  • [7] Total Variation Constrained Graph-Regularized Convex Non-Negative Matrix Factorization for Data Representation
    Tian, Miao
    Leng, Chengcai
    Wu, Haonan
    Basu, Anup
    IEEE SIGNAL PROCESSING LETTERS, 2021, 28 : 126 - 130
  • [8] Graph Regularized Non-Negative Low-Rank Matrix Factorization for Image Clustering
    Li, Xuelong
    Cui, Guosheng
    Dong, Yongsheng
    IEEE TRANSACTIONS ON CYBERNETICS, 2017, 47 (11) : 3840 - 3853
  • [9] An improve face representation and recognition method based on graph regularized non-negative matrix factorization
    Wan, Minghua
    Lai, Zhihui
    Ming, Zhong
    Yang, Guowei
    MULTIMEDIA TOOLS AND APPLICATIONS, 2019, 78 (15) : 22109 - 22126
  • [10] Manifold regularized non-negative matrix factorization with label information
    Li, Huirong
    Zhang, Jiangshe
    Wang, Changpeng
    Liu, Junmin
    JOURNAL OF ELECTRONIC IMAGING, 2016, 25 (02)