Interfacial Solar-to-Heat Conversion for Desalination

被引:217
作者
Liu, Huidong [1 ]
Huang, Zhi [2 ]
Liu, Kang [1 ]
Hu, Xuejiao [1 ]
Zhou, Jun [3 ]
机构
[1] Wuhan Univ, Sch Power & Mech Engn, MOE Key Lab Hydraul Machinery Transients, Wuhan 430072, Hubei, Peoples R China
[2] Lawrence Berkeley Natl Lab, Energy Storage & Distributed Resources Div, Berkeley, CA 94720 USA
[3] Huazhong Univ Sci & Technol, Wuhan Natl Lab Optoelect, Wuhan 430074, Hubei, Peoples R China
基金
中国国家自然科学基金;
关键词
desalination; interfacial solar-to-heat conversion; salt dissipation; vapor generation; water yield; WATER EVAPORATION; SEAWATER DESALINATION; THERMOECONOMIC ANALYSIS; MEMBRANE DISTILLATION; CONDENSATION SURFACE; TRANSFER COEFFICIENT; STEAM-GENERATION; ONE SUN; PERFORMANCE; STILL;
D O I
10.1002/aenm.201900310
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Solar desalination is a promising and sustainable solution for water shortages in the future. Interfacial solar-to-heat conversion for desalination has attracted increasing attention in the past decades, due to the heat localization induced high thermal efficiency, simple structure, and low cost. In this review, the authors summarize and analyze the critical processes involved in such a solar desalination system, including the thermal conversion and transport, salt dissipation, and vapor manipulation. Mathematical models of heat transfer and salt dissipation are also built for quantitative analysis of systematic performance relative to properties of employed materials and system designs. Recent efforts devoted to improving the overall thermal efficiency, salt rejection, and water yield are then summarized. Based on the analysis and previous results, opportunities for further interfacial solar desalination development are highlighted.
引用
收藏
页数:17
相关论文
共 115 条
[41]   Natural convective heat transfer coefficient - a review II. Surfaces in two- and three-dimensional enclosures [J].
Khalifa, AJN .
ENERGY CONVERSION AND MANAGEMENT, 2001, 42 (04) :505-517
[42]   Natural convective heat transfer coefficient - a review I. Isolated vertical and horizontal surfaces [J].
Khalifa, AJN .
ENERGY CONVERSION AND MANAGEMENT, 2001, 42 (04) :491-504
[43]   Aluminum for Plasmonics [J].
Knight, Mark W. ;
King, Nicholas S. ;
Liu, Lifei ;
Everitt, Henry O. ;
Nordlander, Peter ;
Halas, Naomi J. .
ACS NANO, 2014, 8 (01) :834-840
[44]   Performance enhancement of a single basin single slope solar still using agitation effect and external condenser [J].
Kumar, R. Arun ;
Esakkimuthu, G. ;
Murugavel, K. Kalidasa .
DESALINATION, 2016, 399 :198-202
[45]   Plasmonic properties of supported Pt and Pd nanostructures [J].
Langhammer, C ;
Yuan, Z ;
Zoric, I ;
Kasemo, B .
NANO LETTERS, 2006, 6 (04) :833-838
[46]   Environmental impact and impact assessment of seawater desalination [J].
Lattemann, Sabine ;
Hoepner, Thomas .
DESALINATION, 2008, 220 (1-3) :1-15
[47]   Performance study on a passive solar seawater desalination system using multi-effect heat recovery [J].
Li, Shuang-Fei ;
Liu, Zhen-Hua ;
Shao, Zhi-Xiong ;
Xiao, Hong-shen ;
Xia, Ning .
APPLIED ENERGY, 2018, 213 :343-352
[48]   Three-dimensional artificial transpiration for efficient solar waste-water treatment [J].
Li, Xiuqiang ;
Lin, Renxing ;
Ni, George ;
Xu, Ning ;
Hu, Xiaozhen ;
Zhu, Bin ;
Lv, Guangxin ;
Li, Jinlei ;
Zhu, Shining ;
Zhu, Jia .
NATIONAL SCIENCE REVIEW, 2018, 5 (01) :70-77
[49]   Graphene oxide-based efficient and scalable solar desalination under one sun with a confined 2D water path [J].
Li, Xiuqiang ;
Xu, Weichao ;
Tang, Mingyao ;
Zhou, Lin ;
Zhu, Bin ;
Zhu, Shining ;
Zhu, Jia .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2016, 113 (49) :13953-13958
[50]   Graphene oxide-based evaporator with one-dimensional water transport enabling high-efficiency solar desalination [J].
Li, Yiju ;
Gao, Tingting ;
Yang, Zhi ;
Chen, Chaoji ;
Kuang, Yudi ;
Song, Jianwei ;
Jia, Chao ;
Hitz, Emily M. ;
Yang, Bao ;
Hu, Liangbing .
NANO ENERGY, 2017, 41 :201-209