Markov degree of the Birkhoff model

被引:7
作者
Yamaguchi, Takashi [1 ]
Ogawa, Mitsunori [1 ]
Takemura, Akimichi [1 ]
机构
[1] Univ Tokyo, Grad Sch Informat Sci & Technol, Bunkyo Ku, Tokyo 1130033, Japan
基金
日本学术振兴会;
关键词
Algebraic statistics; Markov basis; Normality of semigroup; Ranking model; POLYTOPES;
D O I
10.1007/s10801-013-0488-z
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We prove the conjecture by Diaconis and Eriksson (J. Symbolic Comput. 41(2):182-195, 2006) that the Markov degree of the Birkhoff model is three. In fact, we prove the conjecture in a generalization of the Birkhoff model, where each voter is asked to rank a fixed number, say r, of candidates among all candidates.
引用
收藏
页码:293 / 311
页数:19
相关论文
共 50 条
[21]   Markov Bases and Generalized Lawrence Liftings [J].
Hara Charalambous ;
Apostolos Thoma ;
Marius Vladoiu .
Annals of Combinatorics, 2015, 19 :661-669
[22]   Algebraic representations of Gaussian Markov combinations [J].
Massa, M. Sofia ;
Riccomagno, Eva .
BERNOULLI, 2017, 23 (01) :626-644
[23]   Bounding the maximum likelihood degree [J].
Budur, Nero ;
Wang, Botong .
MATHEMATICAL RESEARCH LETTERS, 2015, 22 (06) :1613-1620
[24]   Bounding the maximum likelihood degree [J].
Budur, Nero ;
Wang, Botong .
MATHEMATICAL RESEARCH LETTERS, 2018, 25 (06) :1613-1620
[25]   The polytope of degree sequences of hypergraphs [J].
Murthy, NLB ;
Srinivasan, MK .
LINEAR ALGEBRA AND ITS APPLICATIONS, 2002, 350 :147-170
[26]   Coupled cluster degree of the Grassmannian ☆ [J].
Borovik, Viktoriia ;
Sturmfels, Bernd ;
Sverrisdottir, Svala .
JOURNAL OF SYMBOLIC COMPUTATION, 2025, 128
[27]   Geometric Policy Iteration for Markov Decision Processes [J].
Wu, Yue ;
De Loera, Jesus A. .
PROCEEDINGS OF THE 28TH ACM SIGKDD CONFERENCE ON KNOWLEDGE DISCOVERY AND DATA MINING, KDD 2022, 2022, :2070-2078
[28]   MARKOV BASES OF CONDITIONAL INDEPENDENCE MODELS FOR PERMUTATIONS [J].
Csiszar, Villo .
KYBERNETIKA, 2009, 45 (02) :249-260
[29]   Markov bases and subbases for bounded contingency tables [J].
Rapallo, Fabio ;
Yoshida, Ruriko .
ANNALS OF THE INSTITUTE OF STATISTICAL MATHEMATICS, 2010, 62 (04) :785-805
[30]   Markov bases and subbases for bounded contingency tables [J].
Fabio Rapallo ;
Ruriko Yoshida .
Annals of the Institute of Statistical Mathematics, 2010, 62 :785-805