Markov degree of the Birkhoff model

被引:7
|
作者
Yamaguchi, Takashi [1 ]
Ogawa, Mitsunori [1 ]
Takemura, Akimichi [1 ]
机构
[1] Univ Tokyo, Grad Sch Informat Sci & Technol, Bunkyo Ku, Tokyo 1130033, Japan
基金
日本学术振兴会;
关键词
Algebraic statistics; Markov basis; Normality of semigroup; Ranking model; POLYTOPES;
D O I
10.1007/s10801-013-0488-z
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We prove the conjecture by Diaconis and Eriksson (J. Symbolic Comput. 41(2):182-195, 2006) that the Markov degree of the Birkhoff model is three. In fact, we prove the conjecture in a generalization of the Birkhoff model, where each voter is asked to rank a fixed number, say r, of candidates among all candidates.
引用
收藏
页码:293 / 311
页数:19
相关论文
共 50 条
  • [1] Markov degree of the Birkhoff model
    Takashi Yamaguchi
    Mitsunori Ogawa
    Akimichi Takemura
    Journal of Algebraic Combinatorics, 2014, 40 : 293 - 311
  • [2] Markov degree of configurations defined by fibers of a configuration
    Koyama, Takayuki
    Ogawa, Mitsunori
    Takemura, Akimichi
    JOURNAL OF ALGEBRAIC STATISTICS, 2015, 6 (02) : 80 - 107
  • [3] Some subpolytopes of the Birkhoff polytope
    Sá, EM
    ELECTRONIC JOURNAL OF LINEAR ALGEBRA, 2006, 15 : 1 - 7
  • [4] Phylogenetic ideals and varieties for the general Markov model
    Allman, Elizabeth S.
    Rhodes, John A.
    ADVANCES IN APPLIED MATHEMATICS, 2008, 40 (02) : 127 - 148
  • [5] Polytopes of magic labelings of graphs and the faces of the Birkhoff polytope
    Ahmed, Maya Mohsin
    ANNALS OF COMBINATORICS, 2008, 12 (03) : 241 - 269
  • [6] Polytopes of Magic Labelings of Graphs and the Faces of the Birkhoff Polytope
    Maya Mohsin Ahmed
    Annals of Combinatorics, 2008, 12 : 241 - 269
  • [7] ALGEBRAIC BIRKHOFF FACTORIZATION AND THE EULER-MACLAURIN FORMULA ON CONES
    Guo, Li
    Paycha, Sylvie
    Zhang, Bin
    DUKE MATHEMATICAL JOURNAL, 2017, 166 (03) : 537 - 571
  • [8] EXTENDING THE LATENT MULTINOMIAL MODEL WITH COMPLEX ERROR PROCESSES AND DYNAMIC MARKOV BASES
    Bonner, Simon J.
    Schofield, Matthew R.
    Noren, Patrik
    Price, Steven J.
    ANNALS OF APPLIED STATISTICS, 2016, 10 (01) : 246 - 263
  • [9] Markov chain Monte Carlo test of toric homogeneous Markov chains
    Takemura, Akimichi
    Hara, Hisayuki
    STATISTICAL METHODOLOGY, 2012, 9 (03) : 392 - 406
  • [10] The algebra of reversible Markov chains
    Pistone, Giovanni
    Rogantin, Maria Piera
    ANNALS OF THE INSTITUTE OF STATISTICAL MATHEMATICS, 2013, 65 (02) : 269 - 293