Approximation properties of mixed sampling-Kantorovich operators

被引:4
作者
Angeloni, Laura [1 ]
Costarelli, Danilo [1 ]
Vinti, Gianluca [1 ]
机构
[1] Univ Perugia, Dept Math & Comp Sci, Via Vanvitelli 1, I-06123 Perugia, Italy
关键词
Sampling-Kantorovich operators; Pointwise convergence; Uniform convergence; Order of approximation; Asymptotic expansions; Voronovskaja formulae; CONVERGENCE; RESPECT; SERIES; ORDER;
D O I
10.1007/s13398-020-00936-x
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In the present paper we study the pointwise and uniform convergence properties of a family of multidimensional sampling Kantorovich type operators. Moreover, besides convergence, quantitative estimates and a Voronovskaja type theorem have been established.
引用
收藏
页数:14
相关论文
共 50 条
  • [31] Approximation by Bivariate (p, q)-Bernstein-Kantorovich Operators
    Acar, Tuncer
    Aral, Ali
    Mohiuddine, S. A.
    IRANIAN JOURNAL OF SCIENCE AND TECHNOLOGY TRANSACTION A-SCIENCE, 2018, 42 (A2): : 655 - 662
  • [32] Applications of sampling Kantorovich operators to thermographic images for seismic engineering
    Cluni, Federico
    Costarelli, Danilo
    Minotti, Anna Maria
    Vinti, Gianluca
    JOURNAL OF COMPUTATIONAL ANALYSIS AND APPLICATIONS, 2015, 19 (04) : 602 - 617
  • [33] Extension of Saturation Theorems for the Sampling Kantorovich Operators
    Benedetta Bartoccini
    Danilo Costarelli
    Gianluca Vinti
    Complex Analysis and Operator Theory, 2019, 13 : 1161 - 1175
  • [34] Approximation by Generalized Positive Linear Kantorovich Operators
    Dhamija, Minakshi
    Deo, Naokant
    FILOMAT, 2017, 31 (14) : 4353 - 4368
  • [35] Approximation by Generalized Kantorovich Sampling Type Series
    Kumar, Angamuthu Sathish
    Devaraj, Ponnaian
    KYUNGPOOK MATHEMATICAL JOURNAL, 2019, 59 (03): : 465 - 480
  • [36] Approximation Properties of Bivariate Extension of q-Bernstein-Schurer-Kantorovich operators
    Acu, Ana Maria
    Muraru, Carmen Violeta
    RESULTS IN MATHEMATICS, 2015, 67 (3-4) : 265 - 279
  • [37] Nonlinear multivariate sampling Kantorovich operators: quantitative estimates in functional spaces
    Cetin, Nursel
    Costarelli, Danilo
    Natale, Mariarosaria
    Vinti, Gianluca
    DOLOMITES RESEARCH NOTES ON APPROXIMATION, 2022, 15 : 12 - 25
  • [38] Approximation by Bivariate (p, q)-Bernstein–Kantorovich Operators
    Tuncer Acar
    Ali Aral
    S. A. Mohiuddine
    Iranian Journal of Science and Technology, Transactions A: Science, 2018, 42 : 655 - 662
  • [39] Approximation by Stancu Variant of ?-Schurer-Kantorovich Operators
    Nasiruzzaman, Md.
    Rao, Nadeem
    Alotaibi, Abdullah
    Mohiuddine, S. A.
    FILOMAT, 2022, 36 (17) : 5751 - 5764
  • [40] Approximation by a new kind of(λ,μ)-Bernstein-Kantorovich operators
    Cai, Qing-Bo
    COMPUTATIONAL & APPLIED MATHEMATICS, 2024, 43 (05)