COMPRESSIBLE NAVIER-STOKES SYSTEM WITH GENERAL INFLOW-OUTFLOW BOUNDARY DATA

被引:27
作者
Chang, T. [1 ]
Jin, B. J. [2 ]
Novotny, A. [3 ]
机构
[1] Yonsei Univ, CMAC, Seoul 03722, South Korea
[2] Mokpo Natl Univ, Dept Math Educ, Muan 534729, South Korea
[3] Univ Sud Toulon Var, EA 2134, IMATH, BP 20132, F-83957 La Garde, France
基金
新加坡国家研究基金会;
关键词
compressible Navier-Stokes system; inhomogeneous boundary conditions; weak solutions; renormalized continuity equation; large inflow; large outflow; GLOBAL EXISTENCE; EQUATIONS; PRESSURE;
D O I
10.1137/17M115089X
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We prove existence of weak solutions to the compressible Navier-Stokes equations in a barotropic regime (adiabatic coefficient gamma > 3/2 in three dimensions, gamma > 1 in two dimensions) with large velocity prescribed at the boundary and large density prescribed at the inflow boundary of a bounded sufficiently smooth domain, without any restriction on either the shape of the inflow/outflow boundaries or the shape of the domain. The result applies also to pressure laws that are nonmonotone on a compact portion of the interval [0, infinity).
引用
收藏
页码:1238 / 1278
页数:41
相关论文
共 50 条
  • [41] Local strong solutions to the stochastic compressible Navier-Stokes system
    Breit, Dominic
    Feireisl, Eduard
    Hofmanova, Martina
    COMMUNICATIONS IN PARTIAL DIFFERENTIAL EQUATIONS, 2018, 43 (02) : 313 - 345
  • [42] Optimal Large Time Behavior of the Full Compressible Navier-Stokes System in R3
    Luo, Zhengyan
    Zhang, Yinghui
    BULLETIN OF THE BRAZILIAN MATHEMATICAL SOCIETY, 2023, 54 (03):
  • [43] A general sufficient criterion for energy conservation in the Navier-Stokes system
    Wang, Yanqing
    Ye, Yulin
    MATHEMATICAL METHODS IN THE APPLIED SCIENCES, 2023, 46 (08) : 9268 - 9285
  • [44] Compressible Navier-Stokes system with the hard sphere pressure law in an exterior domain
    Necasova, Sarka
    Novotny, Antonin
    Roy, Arnab
    ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND PHYSIK, 2022, 73 (05):
  • [45] Existence of Dissipative Solutions to the Compressible Navier-Stokes System with Potential Temperature Transport
    Lukacova-Medvid'ova, Maria
    Schoemer, Andreas
    JOURNAL OF MATHEMATICAL FLUID MECHANICS, 2022, 24 (03)
  • [46] CORNER SINGULARITY DYNAMICS AND REGULARITY OF COMPRESSIBLE VISCOUS NAVIER-STOKES FLOWS
    Kweon, Jae Ryong
    SIAM JOURNAL ON MATHEMATICAL ANALYSIS, 2012, 44 (05) : 3127 - 3161
  • [47] Convergence of a finite volume scheme for the compressible Navier-Stokes system
    Feireisl, Eduard
    Lukacova-Medvid'ova, Maria
    Mizerova, Hana
    She, Bangwei
    ESAIM-MATHEMATICAL MODELLING AND NUMERICAL ANALYSIS-MODELISATION MATHEMATIQUE ET ANALYSE NUMERIQUE, 2019, 53 (06): : 1957 - 1979
  • [48] Global classical solutions of free boundary problem of compressible Navier-Stokes equations with degenerate viscosity
    Yang, Andrew
    Zhao, Xu
    Zhou, Wenshu
    JOURNAL OF DIFFERENTIAL EQUATIONS, 2025, 416 : 1837 - 1860
  • [49] Boundary scalar controllability in projections for the Navier-Stokes system
    Chebotarev, A. Yu.
    DIFFERENTIAL EQUATIONS, 2013, 49 (12) : 1629 - 1638
  • [50] INTERFACE BEHAVIOR OF COMPRESSIBLE NAVIER-STOKES EQUATIONS WITH DISCONTINUOUS BOUNDARY CONDITIONS AND VACUM
    Guo Zhenhua
    He Wen
    ACTA MATHEMATICA SCIENTIA, 2011, 31 (03) : 934 - 952