Tame kernels for biquadratic number fields

被引:5
作者
Yue, Q [1 ]
机构
[1] Nanjing Univ Aeronaut & Astronaut, Dept Math, Nanjing 210016, Jiangsu, Peoples R China
[2] Abdus Salam ICTP, Math Sect, Trieste, Italy
来源
K-THEORY | 2005年 / 35卷 / 1-2期
关键词
Tame kernel; class group; transfer map;
D O I
10.1007/s10977-005-1509-z
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let F = Q(root- d(1)) and E = Q(root- d(1),root d(2)), d(1) and d(2) squarefree integers, be an imaginary field and a biquadratic field, respectively. Let S be the set consisting of all infinite primes, all dyadic primes and all finite primes which ramify in E. Suppose the 4-rank of the class group of F is zero and the S-ideal class group of F has odd order, we give the forms of all elements of order <= 2 in K2OE and use the Hurrelbrink and Kolster's method [ Hurrelbrink, J. and Kolster, M.: J. reine angew. Math. 499 ( 1998), 145 - 188] to obtain the forms of all elements of order 4 in K2OE.
引用
收藏
页码:69 / 91
页数:23
相关论文
共 17 条
  • [1] BROWKIN J, 1982, J REINE ANGEW MATH, V331, P101
  • [2] On the 4-rank of the tame kernel K2(O) in positive definite terms
    Conner, PE
    Hurrelbrink, J
    [J]. JOURNAL OF NUMBER THEORY, 2001, 88 (02) : 263 - 282
  • [3] THE 4-RANK OF K2(O)
    CONNER, PE
    HURRELBRINK, J
    [J]. CANADIAN JOURNAL OF MATHEMATICS-JOURNAL CANADIEN DE MATHEMATIQUES, 1989, 41 (05): : 932 - 960
  • [4] HECKE E, 1981, 77 GTM
  • [5] Hurrelbrink J, 1998, J REINE ANGEW MATH, V499, P145
  • [6] KOLSTER M, 1986, COMMENT MATH HELV, V61, P576
  • [7] Milnor J., 1971, ANN MATH STUD, V72
  • [8] Neukirch J., 1986, Class Field Theory, DOI DOI 10.1007/978-3-642-82465-4
  • [9] QIN HR, 1995, ACTA ARITH, V69, P153
  • [10] QIN HR, 1995, ACTA ARITH, V72, P323