Type-2 aggregation operators

被引:0
作者
Takac, Zdenko [1 ]
机构
[1] Slovak Univ Technol Bratislava, Inst Informat Engn Automat & Math, Bratislava 81237, Slovakia
来源
PROCEEDINGS OF THE 8TH CONFERENCE OF THE EUROPEAN SOCIETY FOR FUZZY LOGIC AND TECHNOLOGY (EUSFLAT-13) | 2013年 / 32卷
关键词
Aggregation operator; Fuzzy truth values; Type-2 fuzzy sets; Type-2 aggregation operator; n-Dimensional fuzzy set; Fuzzy multiset; FUZZY-SETS; SYSTEMS;
D O I
暂无
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
The paper deals with an extension of aggregation operators from the set of real numbers (or interval [0, 1]) to the set of fuzzy truth values (fuzzy sets in [0, 1]). We define so-called type-2 aggregation operator and show that an extension of ordinary aggregation operator by convolution is a type-2 aggregation operator. Finally we show that ordinary aggregation operator, as well as aggregation opera tor for intervals and for n-dimensional intervals are special cases of our type-2 aggregation operator.
引用
收藏
页码:165 / 170
页数:6
相关论文
共 23 条
  • [1] [Anonymous], 1988, Possibility Theory
  • [2] INTUITIONISTIC FUZZY-SETS
    ATANASSOV, KT
    [J]. FUZZY SETS AND SYSTEMS, 1986, 20 (01) : 87 - 96
  • [3] A class of fuzzy multisets with a fixed number of memberships
    Bedregal, Benjamin
    Beliakov, Gleb
    Bustince, Humberto
    Calvo, Tomasa
    Mesiar, Radko
    Paternain, Daniel
    [J]. INFORMATION SCIENCES, 2012, 189 : 1 - 17
  • [4] Calvo T, 2002, STUD FUZZ SOFT COMP, V97, P3
  • [5] Asimple computation of MIN and MAX operations for fuzzy numbers
    Chiu, Chih-Hui
    Wang, Wen-June
    [J]. FUZZY SETS AND SYSTEMS, 2002, 126 (02) : 273 - 276
  • [6] Deschrijver G., 2008, Fuzzy Sets and their Extensions: Representation, Aggregation and Models, V220, P183
  • [7] Detyniecki M., 2000, THESIS LAB INFORM PA
  • [8] A REVIEW OF FUZZY SET AGGREGATION CONNECTIVES
    DUBOIS, D
    PRADE, H
    [J]. INFORMATION SCIENCES, 1985, 36 (1-2) : 85 - 121
  • [9] Exact calculations of extended logical operations on fuzzy truth values
    Gera, Zsolt
    Dombi, Jozsef
    [J]. FUZZY SETS AND SYSTEMS, 2008, 159 (11) : 1309 - 1326
  • [10] Hu B.Q., TYPE 2 FUZZY SETS TH