p-adic L-functions of Hilbert cusp forms and the trivial zero conjecture

被引:3
作者
Barrera, Daniel [1 ]
Dimitrov, Mladen [2 ]
Jorza, Andrei [3 ]
机构
[1] Univ Santiago Chile, Dept Matemat & Ciencia Computac, Alameda 3363,9160000 Estac Cent, Santiago, Chile
[2] Univ Lille, CNRS, UMR 8524, Dept Math,Lab Paul Painleve, F-59000 Lille, France
[3] Univ Notre Dame, Dept Math, 275 Hurley Hall, Notre Dame, IN 46556 USA
基金
欧洲研究理事会;
关键词
Hilbert cusp forms; p-adic L-functions; trivial zero conjecture; overconvergent cohomology; automorphic symbols; partial eigenvarieties; GALOIS REPRESENTATIONS; ORDINARY COHOMOLOGY; MODULAR VARIETIES; L-INVARIANTS; FAMILIES; MOTIVES; PROOF;
D O I
10.4171/JEMS/1165
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We prove a strong form of the trivial zero conjecture at the central point for the p-adic L-function of a non-critically refined self-dual cohomological cuspidal automorphic representation of GL2 over a totally real field, which is Iwahori spherical at places above p. In the case of a simple zero we adapt the approach of Greenberg and Stevens, based on the functional equation for the p-adic L-function of a nearly finite slope family and on improved padic L-functions that we construct using automorphic symbols and overconvergent cohomology. For higher order zeros we develop a conceptually new approach studying the variation of the root number in partial families and establishing the vanishing of many Taylor coefficients of the p-adic L-function of the family.
引用
收藏
页码:3439 / 3503
页数:65
相关论文
共 52 条
[1]  
[Anonymous], 1970, Lecture Notes in Mathematics
[2]   OVERCONVERGENT COHOMOLOGY OF HILBERT MODULAR VARIETIES AND p-ADIC L-FUNCTIONS [J].
Barrera Salazar, Daniel .
ANNALES DE L INSTITUT FOURIER, 2018, 68 (05) :2177-2213
[3]   Proof of the Mahler-Manin conjecture [J].
BarreSireix, K ;
Diaz, G ;
Gramain, F ;
Philibert, G .
INVENTIONES MATHEMATICAE, 1996, 124 (1-3) :1-9
[4]   ON THE EIGENCURVE AT CLASSICAL WEIGHT 1 POINTS [J].
Bellaiche, Joel ;
Dimitrov, Mladen .
DUKE MATHEMATICAL JOURNAL, 2016, 165 (02) :245-266
[5]   Critical p-adic L-functions [J].
Bellaiche, Joel .
INVENTIONES MATHEMATICAE, 2012, 189 (01) :1-60
[6]  
Bellaïche J, 2009, ASTERISQUE, P1
[7]   A GENERALIZATION OF GREENBERG'S L-INVARIANT [J].
Benois, Denis .
AMERICAN JOURNAL OF MATHEMATICS, 2011, 133 (06) :1573-1632
[8]  
Bergdall J., 2017, MEM AM MATH SOC
[9]  
Berger L, 2008, ASTERISQUE, P303
[10]   MOTIVES FOR HILBERT MODULAR-FORMS [J].
BLASIUS, D ;
ROGAWSKI, JD .
INVENTIONES MATHEMATICAE, 1993, 114 (01) :55-87