Range counting over multidimensional data streams

被引:18
作者
Suri, Subhash [1 ]
Toth, Csaba D.
Zhou, Yunhong
机构
[1] Univ Calif Santa Barbara, Dept Comp Sci, Santa Barbara, CA 93106 USA
[2] MIT, Dept Math, Cambridge, MA 02139 USA
[3] Hewlett Packard Labs, Palo Alto, CA 94304 USA
关键词
D O I
10.1007/s00454-006-1269-4
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
We consider the problem of approximate range counting over a stream of d-dimensional points. In the data stream model the algorithm makes a single scan of the data, which is presented in an arbitrary order, and computes a compact summary data structure. The summary, whose size depends on the approximation parameter epsilon, can be used to count the number of points inside a query range within additive error epsilon n, where n is the size of the stream seen so far. We present several results, deterministic and randomized, for both rectangle and halfspace ranges.
引用
收藏
页码:633 / 655
页数:23
相关论文
共 30 条
[1]  
AGARWAL PK, 1997, HDB DISCRETE COMPUTA, P575
[2]  
[Anonymous], 1999, GEOMETRIC DISCREPANC
[3]  
[Anonymous], 2003, DATA STREAMS ALGORIT
[4]  
Babcock B., 2002, Proceedings of the Twenty-First ACM SIGMOD-SIGACT-SIGART Symposium on Principles of Database Systems (PODS), P1, DOI DOI 10.1145/543613.543615
[5]  
Bagchi A., 2004, P 20 ANN ACM S COMPU, P144
[6]   On irregularities of distribution II [J].
Baker, RC .
JOURNAL OF THE LONDON MATHEMATICAL SOCIETY-SECOND SERIES, 1999, 59 :50-64
[7]  
BECK J, 1988, P LOND MATH SOC, V56, P1
[8]   INTEGER-MAKING THEOREMS [J].
BECK, J ;
FIALA, T .
DISCRETE APPLIED MATHEMATICS, 1981, 3 (01) :1-8
[9]  
Beck J., 1987, Cambridge Tracts in Mathematics, V89
[10]  
BECKETT GJ, 1987, J CLIN BIOCHEM NUTR, V2, P1