Modeling shell formation in core-shell nanocrystals in reverse micelle systems

被引:20
|
作者
Shukla, Diwakar [1 ]
Mehra, Anurag [1 ]
机构
[1] Indian Inst Technol, Dept Chem Engn, Bombay 400076, Maharashtra, India
关键词
D O I
10.1021/la061499z
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
The mechanisms responsible for the formation of the shell in core-shell nanocrystals are ion-displacement and heterogeneous nucleation. In the ion-displacement mechanism, the shell is formed by the displacement reaction at the surface of the core nanoparticle whereas in heterogeneous nucleation the core particle induces the nucleation (or direct deposition) of shell material on its surface. The formation of core-shell nanocrystals via the post-core route has been examined in the current investigation. A purely probabilistic Monte Carlo scheme for the formation of the shell has been developed to predict the experimental results of Hota et al. (Hota, G.; Jain, S.; Khilar, K.C. Colloids Surf., A 2004, 232, 119) for the precipitation of Ag2S-coated CdS (Ag2S@CdS) nanoparticles. The simulation procedure involves two stages. In the first stage, shell formation takes place as a result of the consumption of supersaturation, ion displacement, and reaction between Ag+ and excess sulfide ions. The growth in the second stage is driven by the coagulation of nanoparticles. The results indicate that the fraction of shell deposited by the ion-displacement mechanism increases with increasing ion ratio and decreases with increasing water-to-surfactant molar ratio.
引用
收藏
页码:9500 / 9506
页数:7
相关论文
共 50 条
  • [31] Synthesis and electrochemical activities of TiC/C core-shell nanocrystals
    Yu, Jieyi
    Yu, Hongtao
    Gao, Jian
    Zhou, Lei
    Ding, Ang
    Gao, Xiaoxia
    Huang, Hao
    Gao, Song
    Shah, Asif
    Dong, Xinglong
    Quan, Xie
    JOURNAL OF ALLOYS AND COMPOUNDS, 2017, 693 : 500 - 509
  • [32] Investigation of intrinsic defects in core-shell structured ZnO nanocrystals
    Parashar, S. K. S.
    Murty, B. S.
    Repp, S.
    Weber, S.
    Erdem, E.
    JOURNAL OF APPLIED PHYSICS, 2012, 111 (11)
  • [33] The implications of grading on the emission line width of core-shell nanocrystals
    Phadnis, Chinmay
    Sonawane, Kiran G.
    Sudarsan, V.
    Mahamuni, Shailaja
    JOURNAL OF PHYSICS D-APPLIED PHYSICS, 2017, 50 (14)
  • [34] SWCNT photocathodes sensitised with InP/ZnS core-shell nanocrystals
    Macdonald, Thomas J.
    Tune, Daniel D.
    Dewi, Melissa R.
    Bear, Joseph C.
    McNaughter, Paul D.
    Mayes, Andrew G.
    Skinner, William M.
    Parkin, Ivan P.
    Shapter, Joseph G.
    Nann, Thomas
    JOURNAL OF MATERIALS CHEMISTRY C, 2016, 4 (16) : 3379 - 3384
  • [35] Charge carrier identification in tunneling spectroscopy of core-shell nanocrystals
    Nguyen, T. H.
    Habinshuti, J.
    Justo, Y.
    Gomes, R.
    Mahieu, G.
    Godey, S.
    Nys, J. P.
    Carrillo, S.
    Hens, Z.
    Robbe, O.
    Turrell, S.
    Grandidier, B.
    PHYSICAL REVIEW B, 2011, 84 (19)
  • [36] A "Mix-and-Click" Approach to Double Core-Shell Micelle Functionalization
    Hansell, Claire F.
    O'Reilly, Rachel K.
    ACS MACRO LETTERS, 2012, 1 (07) : 896 - 901
  • [37] Rational material design using Au core-shell nanocrystals
    Mulvaney, P
    Liz-Marzán, LM
    COLLOID CHEMISTRY 1, 2003, 226 : 225 - 246
  • [38] Synthesis of CuInS2@CdS core-shell nanocrystals
    Wei, Qinglian
    Mu, Jin
    JOURNAL OF DISPERSION SCIENCE AND TECHNOLOGY, 2007, 28 (06) : 916 - 919
  • [39] Biologically programmed synthesis of core-shell CdSe/ZnS nanocrystals
    Singh, Shailendra
    Bozhilov, Krassimir
    Mulchandani, Ashok
    Myung, Nosang
    Chen, Wilfred
    CHEMICAL COMMUNICATIONS, 2010, 46 (09) : 1473 - 1475
  • [40] Preparation of core-shell Ti-Nb oxide nanocrystals
    David S. A. Simakov
    Yoed Tsur
    Journal of Nanoparticle Research, 2008, 10 : 77 - 85