Periodicity in a generalized semi-ratio-dependent predator-prey system with time delays and impulses

被引:14
作者
Ding, Xiaoquan [1 ,2 ]
Jiang, Jifa [3 ]
机构
[1] Tongji Univ, Dept Math, Shanghai 200092, Peoples R China
[2] Shandong Agr Univ, Dept Math & Informat Sci, Tai An 271018, Shandong, Peoples R China
[3] Shanghai Normal Univ, Dept Math, Shanghai 200234, Peoples R China
基金
中国国家自然科学基金;
关键词
Predator-prey system; Periodic solution; Semi-ratio-dependent; Delay; Impulse; Coincidence degree; FUNCTIONAL-RESPONSE; DYNAMICS; STABILITY; MODEL; EXISTENCE; GROWTH;
D O I
10.1016/j.jmaa.2009.06.048
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
With the help of a continuation theorem based on coincidence degree theory, we establish necessary and sufficient conditions for the existence of positive periodic solutions in a generalized semi-ratio-dependent predator-prey system with time delays and impulses, which covers many models appeared in the literature. When the results reduce to the semi-ratio-dependent predator-prey system without impulses, they generalize and improve some known ones. (C) 2009 Elsevier Inc. All rights reserved.
引用
收藏
页码:223 / 234
页数:12
相关论文
共 31 条
[1]  
[Anonymous], 1977, COINCIDENCE DEGREE N, DOI DOI 10.1007/BFB0089537
[2]  
Bainov D., 1993, IMPULSIVE DIFFERENTI, DOI [10.1201/9780203751206, DOI 10.1201/9780203751206]
[3]   Global analyses in some delayed ratio-dependent predator-prey systems [J].
Beretta, E ;
Kuang, Y .
NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 1998, 32 (03) :381-408
[4]   The effects of the functional response on the bifurcation behavior of a mite predator-prey interaction model [J].
Collings, JB .
JOURNAL OF MATHEMATICAL BIOLOGY, 1997, 36 (02) :149-168
[5]   Periodic solutions for a semi-ratio-dependent predator-prey system with nonmonotonic functional response and time delay [J].
Ding, Xiaohua ;
Lu, Chun ;
Liu, Mingzhu .
NONLINEAR ANALYSIS-REAL WORLD APPLICATIONS, 2008, 9 (03) :762-775
[6]   Positive periodic solution for a semi-ratio-dependent predator-prey system with diffusion and time delays [J].
Ding, Xiaoquan ;
Wang, Fangfang .
NONLINEAR ANALYSIS-REAL WORLD APPLICATIONS, 2008, 9 (02) :239-249
[7]  
Gasull A., 1997, Publ. Mat, V41, P149, DOI DOI 10.5565/PUBLMAT_
[8]   GLOBAL MODELS OF GROWTH AND COMPETITION [J].
GILPIN, ME ;
AYALA, FJ .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 1973, 70 (12) :3590-3593
[9]  
Holling C. S., 1965, Mem ent Soc Canada Ottawa, Vno. 45, P1
[10]   GLOBAL STABILITY FOR A CLASS OF PREDATOR-PREY SYSTEMS [J].
HSU, SB ;
HUANG, TW .
SIAM JOURNAL ON APPLIED MATHEMATICS, 1995, 55 (03) :763-783