An hp-adaptive Newton-Galerkin finite element procedure for semilinear boundary value problems

被引:4
作者
Amrein, Mario [1 ]
Melenk, Jens Markus [2 ]
Wihler, Thomas P. [3 ]
机构
[1] Lucerne Univ Appl Sci & Arts, CH-6002 Luzern, Switzerland
[2] TU Wien, Inst Anal & Sci Comp, A-1040 Vienna, Austria
[3] Univ Bern, Math Inst, CH-3012 Bern, Switzerland
基金
瑞士国家科学基金会;
关键词
adaptive Newton methods; semilinear elliptic problems; singularly perturbed problems; adaptive finite element methods; hp-FEM; hp-adaptivity; PARTIAL-DIFFERENTIAL-EQUATIONS; ERROR ESTIMATORS; LINEARIZATION;
D O I
10.1002/mma.4113
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we develop an hp-adaptive procedure for the numerical solution of general, semilinear elliptic boundary value problems in 1d, with possible singular perturbations. Our approach combines both a prediction-type adaptive Newton method and an hp-version adaptive finite element discretization (based on a robust a posteriori residual analysis), thereby leading to a fully hp-adaptive Newton-Galerkin scheme. Numerical experiments underline the robustness and reliability of the proposed approach for various examples. Copyright (c) 2016 John Wiley & Sons, Ltd.
引用
收藏
页码:1973 / 1985
页数:13
相关论文
共 28 条
[21]  
Melenk JM, 2015, 14086037 ARXIV
[22]  
Mitchell W.F., 2011, Recent advances in computational and applied mathematics, P227, DOI 10.1007/978-90-481-9981-5_10
[23]  
Roos HG, 2008, SPR SER COMPUT MATH, V24, P1
[24]   THE NEWTON-RAPHSON METHOD AND ADAPTIVE ODE SOLVERS [J].
Schneebeli, Hans Rudolf ;
Wihler, Thomas P. .
FRACTALS-COMPLEX GEOMETRY PATTERNS AND SCALING IN NATURE AND SOCIETY, 2011, 19 (01) :87-99
[25]  
Schwab C, 1998, P H P FEM THEORY APP
[26]   Robust a posteriori error estimators for a singularly perturbed reaction-diffusion equation [J].
Verfurth, R .
NUMERISCHE MATHEMATIK, 1998, 78 (03) :479-493
[27]   An hp-adaptive strategy based on continuous Sobolev embeddings [J].
Wihler, Thomas P. .
JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2011, 235 (08) :2731-2739
[28]  
Wihler TP, 2011, H P ADAPTIVE FEM PRO, V11