LIE SYMMETRY ANALYSIS TO THE WEAKLY COUPLED KAUP-KUPERSHMIDT EQUATION WITH TIME FRACTIONAL ORDER

被引:7
作者
Wang, Zhenli [1 ]
Zhang, Lihua [2 ]
Li, Chuanzhong [3 ]
机构
[1] Nanjing Univ Sci & Technol, Sch Sci, Nanjing 210094, Jiangsu, Peoples R China
[2] Dezhou Univ, Sch Math Sci, Dezhou 253000, Shandong, Peoples R China
[3] Ningbo Univ, Sch Math Sci, Ningbo 315211, Zhejiang, Peoples R China
基金
中国国家自然科学基金;
关键词
Lie Symmetry Analysis; Time Fractional Weakly Coupled Kaup-Kupershmidt Equation; Riemann-Liouville Derivative; Erdelyi-Kober Operators; Sub-Equation Method; PARTIAL-DIFFERENTIAL-EQUATIONS; HOMOTOPY PERTURBATION METHOD; SYMBOLIC COMPUTATION; NUMERICAL-SOLUTIONS; POSITIVE SOLUTIONS; UNIQUENESS; EXISTENCE; SOLITONS; SYSTEMS;
D O I
10.1142/S0218348X1950052X
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
The aim of this paper is to apply the Lie group analysis method to the weakly coupled Kaup-Kupershmidt (KK) equation with time fractional order. We considered the symmetry analysis, explicit solutions to the weakly coupled time fractional KK (TF-KK) equation with Riemann-Liouville (RL) derivative. The weakly coupled TF-KK equation is reduced to a nonlinear ordinary differential equation (ODE) of fractional order. We solve the reduced fractional ODE using the sub-equation method.
引用
收藏
页数:10
相关论文
共 44 条
[21]   Existence and uniqueness of positive solutions for singular fractional differential systems with coupled integral boundary conditions [J].
Liu, Lishan ;
Li, Hongdan ;
Liu, Chun ;
Wu, Yonghong .
JOURNAL OF NONLINEAR SCIENCES AND APPLICATIONS, 2017, 10 (01) :243-262
[22]  
Magin Richard L., 2004, Critical Reviews in Biomedical Engineering, V32, P1, DOI 10.1615/CritRevBiomedEng.v32.10
[23]   The random walk's guide to anomalous diffusion: a fractional dynamics approach [J].
Metzler, R ;
Klafter, J .
PHYSICS REPORTS-REVIEW SECTION OF PHYSICS LETTERS, 2000, 339 (01) :1-77
[24]  
Miller K.S., 1993, INTRO FRACTIONAL CAL
[25]   Comparison between the homotopy perturbation method and the variational iteration method for linear fractional partial differential equations [J].
Momani, Shaher ;
Odibat, Zaid .
COMPUTERS & MATHEMATICS WITH APPLICATIONS, 2007, 54 (7-8) :910-919
[26]   A generalized differential transform method for linear partial differential equations of fractional order [J].
Odibat, Zaid ;
Momani, Shaher .
APPLIED MATHEMATICS LETTERS, 2008, 21 (02) :194-199
[27]   Modified homotopy perturbation method: Application to quadratic Riccati differential equation of fractional order [J].
Odibat, Zaid ;
Momani, Shaher .
CHAOS SOLITONS & FRACTALS, 2008, 36 (01) :167-174
[28]  
Podlubny I, 1999, MATH SCI ENG
[29]  
Podlubny I., 1999, FRACTIONAL DIFFERENT
[30]   Exact wave solutions for the nonlinear time fractional Sharma-Tasso-Olver equation and the fractional Klein-Gordon equation in mathematical physics [J].
Roy, Ripan ;
Akbar, M. Ali ;
Wazwaz, Abdul Majid .
OPTICAL AND QUANTUM ELECTRONICS, 2018, 50 (01)