LIE SYMMETRY ANALYSIS TO THE WEAKLY COUPLED KAUP-KUPERSHMIDT EQUATION WITH TIME FRACTIONAL ORDER

被引:7
作者
Wang, Zhenli [1 ]
Zhang, Lihua [2 ]
Li, Chuanzhong [3 ]
机构
[1] Nanjing Univ Sci & Technol, Sch Sci, Nanjing 210094, Jiangsu, Peoples R China
[2] Dezhou Univ, Sch Math Sci, Dezhou 253000, Shandong, Peoples R China
[3] Ningbo Univ, Sch Math Sci, Ningbo 315211, Zhejiang, Peoples R China
基金
中国国家自然科学基金;
关键词
Lie Symmetry Analysis; Time Fractional Weakly Coupled Kaup-Kupershmidt Equation; Riemann-Liouville Derivative; Erdelyi-Kober Operators; Sub-Equation Method; PARTIAL-DIFFERENTIAL-EQUATIONS; HOMOTOPY PERTURBATION METHOD; SYMBOLIC COMPUTATION; NUMERICAL-SOLUTIONS; POSITIVE SOLUTIONS; UNIQUENESS; EXISTENCE; SOLITONS; SYSTEMS;
D O I
10.1142/S0218348X1950052X
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
The aim of this paper is to apply the Lie group analysis method to the weakly coupled Kaup-Kupershmidt (KK) equation with time fractional order. We considered the symmetry analysis, explicit solutions to the weakly coupled time fractional KK (TF-KK) equation with Riemann-Liouville (RL) derivative. The weakly coupled TF-KK equation is reduced to a nonlinear ordinary differential equation (ODE) of fractional order. We solve the reduced fractional ODE using the sub-equation method.
引用
收藏
页数:10
相关论文
共 44 条
[1]  
Akbar A., 2018, THERM SCI, V22, P97
[2]  
[Anonymous], 1994, GEN FRACTIONAL CALCU
[3]   Symbolic computation of exact solutions expressible in hyperbolic and elliptic functions for nonlinear PDEs [J].
Baldwin, D ;
Göktas, Ü ;
Hereman, W ;
Hong, L ;
Martino, RS ;
Miller, JC .
JOURNAL OF SYMBOLIC COMPUTATION, 2004, 37 (06) :669-705
[4]   Invariance of a partial differential equation of fractional order under the Lie group of scaling transformations [J].
Buckwar, E ;
Luchko, Y .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 1998, 227 (01) :81-97
[5]   Numerical solutions of coupled Burgers equations with time- and space-fractional derivatives [J].
Chen, Yong ;
An, Hong-Li .
APPLIED MATHEMATICS AND COMPUTATION, 2008, 200 (01) :87-95
[6]  
Chen Y, 2008, COMMUN THEOR PHYS, V49, P839, DOI 10.1088/0253-6102/49/4/07
[7]   Similarity solutions to nonlinear heat conduction and Burgers/Korteweg-deVries fractional equations [J].
Djordjevic, Vladan D. ;
Atanackovic, Teodor M. .
JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2008, 222 (02) :701-714
[8]   The Adomian decomposition method for solving partial differential equations of fractal order in finite domains [J].
El-Sayed, A. M. A. ;
Gaber, M. .
PHYSICS LETTERS A, 2006, 359 (03) :175-182
[9]   Symmetry properties of fractional diffusion equations [J].
Gazizov, R. K. ;
Kasatkin, A. A. ;
Lukashchuk, S. Yu .
PHYSICA SCRIPTA, 2009, T136
[10]  
Gazizov R.K., 2007, Vestn. USATU, V9, P125, DOI DOI 10.1088/0031-8949/2009/T136/014016