Boolean Approach to Dichotomic Quantum Measurement Theories

被引:3
作者
Nagata, K. [1 ]
Nakamura, T. [2 ]
Batle, J. [3 ]
Abdalla, S. [4 ]
Farouk, A. [5 ,6 ]
机构
[1] Korea Adv Inst Sci & Technol, Dept Phys, Daejeon 34141, South Korea
[2] Keio Univ, Dept Informat & Comp Sci, Yokohama, Kanagawa 2238522, Japan
[3] Univ Illes Balears, Dept Fis, Palma De Mallorca 07122, Balearic Island, Spain
[4] King Abdulaziz Univ, Fac Sci, Dept Phys, Jeddah 21589, Saudi Arabia
[5] Al Zahra Coll Women, Dept Informat Technol, Muscat, Oman
[6] Sci Res Grp, Tanta, Egypt
关键词
Quantum measurement theory; Quantum non locality; Formalism; REALISTIC LEGGETT MODELS; BEFORE-BEFORE EXPERIMENT; HIDDEN-VARIABLES; ALGORITHM; COMPUTER; IMPLEMENTATION; MECHANICS;
D O I
10.3938/jkps.70.229
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
Recently, a new measurement theory based on truth values was proposed by Nagata and Nakamura [Int. J. Theor. Phys. 55, 3616 (2016)], that is, a theory where the results of measurements are either 0 or 1. The standard measurement theory accepts a hidden variable model for a single Pauli observable. Hence, we can introduce a classical probability space for the measurement theory in this particular case. Additionally, we discuss in the present contribution the fact that projective measurement theories (the results of which are either + 1 or -1) imply the Bell, Kochen, and Specker (BKS) paradox for a single Pauli observable. To justify our assertion, we present the BKS theorem in almost all the two-dimensional states by using a projective measurement theory. As an example, we present the BKS theorem in two-dimensions with white noise. Our discussion provides new insight into the quantum measurement problem by using this measurement theory based on the truth values.
引用
收藏
页码:229 / 235
页数:7
相关论文
共 41 条
  • [1] Bell J. S., 1964, Physics Physique Fizika, V1, P195, DOI [DOI 10.1103/PHYSICSPHYSIQUEFIZIKA.1.195, 10.1103/Physics-PhysiqueFizika.1.195]
  • [2] Quantum complexity theory
    Bernstein, E
    Vazirani, U
    [J]. SIAM JOURNAL ON COMPUTING, 1997, 26 (05) : 1411 - 1473
  • [3] Bernstein E., 1993, Proceedings of the Twenty-Fifth Annual ACM Symposium on the Theory of Computing, P11, DOI 10.1145/167088.167097
  • [4] Fiber-optics implementation of the Deutsch-Jozsa and Bernstein-Vazirani quantum algorithms with three qubits
    Brainis, E
    Lamoureux, LP
    Cerf, NJ
    Emplit, P
    Haelterman, M
    Massar, S
    [J]. PHYSICAL REVIEW LETTERS, 2003, 90 (15) : 4
  • [5] Experimental falsification of leggett's nonlocal variable model
    Branciard, Cyril
    Ling, Alexander
    Gisin, Nicolas
    Kurtsiefer, Christian
    Lamas-Linares, Antia
    Scarani, Valerio
    [J]. PHYSICAL REVIEW LETTERS, 2007, 99 (21)
  • [6] Chuang I. N., 2000, Quantum Computation and Quantum Information
  • [7] Cleve R, 1998, P ROY SOC A-MATH PHY, V454, P339, DOI 10.1002/(SICI)1099-0526(199809/10)4:1<33::AID-CPLX10>3.0.CO
  • [8] 2-U
  • [9] Implementing the Deutsch algorithm with polarization and transverse spatial modes
    de Oliveira, AN
    Walborn, SP
    Monken, CH
    [J]. JOURNAL OF OPTICS B-QUANTUM AND SEMICLASSICAL OPTICS, 2005, 7 (09) : 288 - 292
  • [10] RAPID SOLUTION OF PROBLEMS BY QUANTUM COMPUTATION
    DEUTSCH, D
    JOZSA, R
    [J]. PROCEEDINGS OF THE ROYAL SOCIETY OF LONDON SERIES A-MATHEMATICAL PHYSICAL AND ENGINEERING SCIENCES, 1992, 439 (1907): : 553 - 558