On the necessary conditions of global existence to a quasilinear inequality in the half-space

被引:39
作者
Egorov, YV
Galakitionov, VA
Kondratiev, VA
Pohozaev, SI
机构
[1] Univ Toulouse 3, UFR MIG, Lab Math Ind & Phys, UMR 5640, F-31062 Toulouse 4, France
[2] Univ Bath, Sch Math Sci, Bath BA2 7AY, Avon, England
[3] Moscow MV Lomonosov State Univ, Mehmat Fac, Moscow 119899, Russia
[4] VA Steklov Math Inst, Moscow 117333, Russia
来源
COMPTES RENDUS DE L ACADEMIE DES SCIENCES SERIE I-MATHEMATIQUE | 2000年 / 330卷 / 02期
关键词
D O I
10.1016/S0764-4442(00)00124-5
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We consider functions u(t, x) satisfying the inequality: partial derivative u/partial derivative t greater than or equal to L[u(p)] + \u\(q), p > 0, q > 1, q > p, for all t greater than or equal to 0, x epsilon R-n, where L[v]:= Sigma(\alpha\=m) D-alpha(a(alpha)(t,x,v)v) is a differential operator of order m, a(alpha)(t,x,v) epsilon L-infinity. We prove that u(t,x) drop 0 if 1 < q, 0 < p < q less than or equal to p + m/n, u epsilon L-loc(q), integral(Rn) u(0, x) dx less than or equal to 0. This result generalizes some results of H. Fujita, K. Hayakawa, V.A. Galaktionov, S.P. Kurdyumov, A.P. Mikhailov, A.A. Samarskii, V.A. Kondratiev and S.D. Eidelman. We prove also a similar result for systems of inequalities. Another our theorem generalizes a theorem of P. Meier. (C) 2000 Academie des sciences/Editions scientifiques et medicales Elsevier SAS.
引用
收藏
页码:93 / 98
页数:6
相关论文
共 6 条