High Resolution Spectral Estimation using BP via Compressive Sensing

被引:0
|
作者
Duarte, Isabel M. P. [1 ,2 ]
Vieira, Jose M. N. [2 ]
Ferreira, Paulo J. S. G. [2 ]
Albuquerque, Daniel F. [2 ]
机构
[1] Univ Aveiro, Polytech Inst Viseu, Sch Technol & Management Viseu, Aveiro, Portugal
[2] Univ Aveiro, IEETA DETI, Signal Proc Lab, Aveiro, Portugal
来源
WORLD CONGRESS ON ENGINEERING AND COMPUTER SCIENCE, WCECS 2012, VOL I | 2012年
关键词
Basis Pursuit; compressive sensing; spectral estimation; sparse representations; UNCERTAINTY PRINCIPLES; SIGNAL RECOVERY;
D O I
暂无
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
In this paper we propose a method based on compressed sensing (CS) for estimating the spectrum of a signal written as a linear combination of a small number of sinusoids. In the case of finite-length signals, the Fourier coefficients are not exactly sparse due to the leakage effect if the frequency is not a multiple of the fundamental frequency; To overcome this problem our algorithm transform the DFT basis into a frame with a larger number of vectors, by inserting columns between some of the initial ones. The algorithm applies Basis Pursuit (BP) to estimate the sinusoids amplitude, phase and frequency.
引用
收藏
页码:699 / 704
页数:6
相关论文
共 50 条
  • [1] Spectral Unmixing via Compressive Sensing
    Liu, Junmin
    Zhang, Jiangshe
    IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2014, 52 (11): : 7099 - 7110
  • [2] JOINT SPARSITY AND FREQUENCY ESTIMATION FOR SPECTRAL COMPRESSIVE SENSING
    Nielsen, Jesper Kjaer
    Christensen, Mads Graesboll
    Jensen, Soren Holdt
    2014 IEEE INTERNATIONAL CONFERENCE ON ACOUSTICS, SPEECH AND SIGNAL PROCESSING (ICASSP), 2014,
  • [3] A high resolution spectrum reconstruction algorithm using compressive sensing theory
    Zheng, Zhaoyu
    Liang, Dakai
    Liu, Shulin
    Feng, Shuqing
    INTERNATIONAL CONFERENCE ON OPTICAL AND PHOTONIC ENGINEERING (ICOPEN 2015), 2015, 9524
  • [4] Compressive Sensing for High Resolution Radar Imaging
    Anitori, Laura
    Otten, Matern
    Hoogeboom, Peter
    2010 ASIA-PACIFIC MICROWAVE CONFERENCE, 2010, : 1809 - 1812
  • [5] Spectral compressive sensing
    Duarte, Marco F.
    Baraniuk, Richard G.
    APPLIED AND COMPUTATIONAL HARMONIC ANALYSIS, 2013, 35 (01) : 111 - 129
  • [6] High Resolution MIMO Radar Sensing With Compressive Illuminations
    Sugavanam, Nithin
    Baskar, Siddharth
    Ertin, Emre
    IEEE TRANSACTIONS ON SIGNAL PROCESSING, 2022, 70 : 1448 - 1463
  • [7] Compressive Sensing Based High-Resolution Channel Estimation for OFDM System
    Meng, Jia
    Yin, Wotao
    Li, Yingying
    Nam Tuan Nguyen
    Han, Zhu
    IEEE JOURNAL OF SELECTED TOPICS IN SIGNAL PROCESSING, 2012, 6 (01) : 15 - 25
  • [8] DOA Estimation Using Random Linear Arrays Via Compressive Sensing
    Pazos, S.
    Hurtado, M.
    Muravchik, C. H.
    IEEE LATIN AMERICA TRANSACTIONS, 2014, 12 (05) : 859 - 863
  • [9] Super-Resolution Power and Robustness of Compressive Sensing for Spectral Estimation With Application to Spaceborne Tomographic SAR
    Zhu, Xiao Xiang
    Bamler, Richard
    IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2012, 50 (01): : 247 - 258
  • [10] Super-Resolution Imager via Compressive Sensing
    Wang, Qi
    Shi, Guangming
    2010 IEEE 10TH INTERNATIONAL CONFERENCE ON SIGNAL PROCESSING PROCEEDINGS (ICSP2010), VOLS I-III, 2010, : 956 - 959