The expression of the generalized Bott-Duffin inverse and its perturbation theory

被引:9
作者
Xue, YF [1 ]
Chen, GL
机构
[1] E China Univ Sci & Technol, Dept Math, Shanghai 200237, Peoples R China
[2] E China Normal Univ, Dept Math, Shanghai 200062, Peoples R China
关键词
M-P inverses; generalized B-D inverses; least squares; L-zero matrix;
D O I
10.1016/S0096-3003(01)00204-1
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Let L be a subspace of C" and P-L be the orthogonal projection of C-n onto L. Then for the n x n matrix A, the generalized Bott-Duffin (B-D) inverse A((L))((+)) is given by A((L))((+)) = P-L(AP(L) + I - P-L)(+). In this paper we will give an expression of A((L))((+)). In the rest of the part, the perturbation analysis of A((L))((+)) and the least squares Solution of the generalized B-D equation Ax + y = b for x is an element of L and y E L-perpendicular to will be established under certain small perturbation of P(L)AP(L). (C) 2002 Elsevier Science Inc. All rights reserved.
引用
收藏
页码:437 / 444
页数:8
相关论文
共 10 条
[1]  
BENISRAEL A, 1974, GEN INVERSE THEORY A
[2]   ON THE ALGEBRA OF NETWORKS [J].
BOTT, R ;
DUFFIN, RJ .
TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 1953, 74 (JAN) :99-109
[3]  
CHEN G, IN PRESS ERROR ESTIM
[4]   Perturbation theory for the generalized Bott-Duffin inverse and its applications [J].
Chen, GL ;
Liu, GM ;
Xue, YF .
APPLIED MATHEMATICS AND COMPUTATION, 2002, 129 (01) :145-155
[5]   Perturbation analysis for the operator equation Tx=b in Banach spaces [J].
Chen, GL ;
Xue, YF .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 1997, 212 (01) :107-125
[6]   Perturbation analysis of the least squares solution in Hilbert spaces [J].
Chen, GL ;
Wei, MS ;
Xue, YF .
LINEAR ALGEBRA AND ITS APPLICATIONS, 1996, 244 :69-80
[7]   The expression of the generalized inverse of the perturbed operator under Type I perturbation in Hilbert spaces [J].
Chen, GL ;
Xue, YF .
LINEAR ALGEBRA AND ITS APPLICATIONS, 1998, 285 (1-3) :1-6
[8]  
CHEN YL, 1990, LINEAR ALGEBRA APPL, V134, P71
[9]  
GUORONG W, 1993, J SHANGHAI TEACHING, V22, P4
[10]  
Stewart G., 1990, MATRIX PERTURBATION