Maximizing the rate capability of carbon-based anode materials for sodium-ion batteries

被引:22
作者
Kim, Dae-Yeong [1 ]
Li, Oi Lun [2 ]
Kang, Jun [3 ]
机构
[1] Tokyo Inst Technol, Dept Mech Engn, Meguro Ku, Tokyo 1528550, Japan
[2] Pusan Natl Univ, Sch Mat Sci & Engn, Busan 46241, South Korea
[3] Korea Maritime & Ocean Univ, Div Marine Engn, 727 Taejong Ro, Busan 49112, South Korea
基金
新加坡国家研究基金会;
关键词
Hierarchical porous carbon material; Nitrogen doping; Sodium ion batteries; Capacity retention; Rate capability; Coulombic efficiency; HIGH-PERFORMANCE; POROUS CARBON; FRAMEWORKS; NANOSHEETS; CAPACITY; STORAGE;
D O I
10.1016/j.jpowsour.2020.228973
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Maximizing the rate capability of carbon materials optimizes sodium ion battery (SIB) performance. This study develops nanoscale nitrogen-doped carbon material (NNCM), in which nano-sized primary particles aggregate. These aggregates form a meso-macro-hierarchical porous structure, which facilitates Na+ diffusion from outside the aggregates into the primary nanoparticles. The large specific surface area of carbon black improves Na+ accessibility by forming large interfaces, and Na+ is easily solvated through defect sites and pores on the primary particle surfaces. Furthermore, primary nanoparticles have short Na+ diffusion pathways, while turbostratic structures provide broad pathways aiding Na+ diffusion. Nitrogen improves the electrical conductivity of the carbon matrix and provides abundant active sites by creating extrinsic defects. Together, these factors afford NNCM good capacity retention (38% at 100 A/g vs. 1 A/g), reversible capacity (similar to 101 mAh/g at 100 A/g), ultrahigh cycling stability (11,000 cycles at 100 A/g), high initial coulombic efficiency (80%), and remarkable rate capability.
引用
收藏
页数:8
相关论文
共 52 条
[1]   Array of nanosheets render ultrafast and high-capacity Na-ion storage by tunable pseudocapacitance [J].
Chao, Dongliang ;
Zhu, Changrong ;
Yang, Peihua ;
Xia, Xinhui ;
Liu, Jilei ;
Wang, Jin ;
Fan, Xiaofeng ;
Savilov, Serguei V. ;
Lin, Jianyi ;
Fan, Hong Jin ;
Shen, Ze Xiang .
NATURE COMMUNICATIONS, 2016, 7
[2]   Hard carbons for sodium-ion batteries: Structure, analysis, sustainability, and electrochemistry [J].
Dou, Xinwei ;
Hasa, Ivana ;
Saurel, Damien ;
Vaalma, Christoph ;
Wu, Liming ;
Buchholz, Daniel ;
Bresser, Dominic ;
Komaba, Shinichi ;
Passerini, Stefano .
MATERIALS TODAY, 2019, 23 :87-104
[3]   Tungsten Nitride Nanodots Embedded Phosphorous Modified Carbon Fabric as Flexible and Robust Electrode for Asymmetric Pseudocapacitor [J].
Dubal, Deepak P. ;
Chodankar, Nilesh R. ;
Qiao, Shizhang .
SMALL, 2019, 15 (01)
[4]   Nitrogen doped porous carbon fibres as anode materials for sodium ion batteries with excellent rate performance [J].
Fu, Lijun ;
Tang, Kun ;
Song, Kepeng ;
van Aken, Peter A. ;
Yu, Yan ;
Maier, Joachim .
NANOSCALE, 2014, 6 (03) :1384-1389
[5]   Metal-organic frameworks derived porous core/shellCoP@C polyhedrons anchored on 3D reduced graphene oxide networks as anode for sodium- ion battery [J].
Ge, Xiaoli ;
Li, Zhaoqiang ;
Yin, Longwei .
NANO ENERGY, 2017, 32 :117-124
[6]  
He JS, 2017, NAT COMMUN, V8, P1
[7]   Carbon quantum dot micelles tailored hollow carbon anode for fast potassium and sodium storage [J].
Hong, Wanwan ;
Zhang, Yu ;
Yang, Li ;
Tian, Ye ;
Ge, Peng ;
Hu, Jiugang ;
Wei, Weifeng ;
Zou, Guoqiang ;
Hou, Hongshuai ;
Ji, Xiaobo .
NANO ENERGY, 2019, 65
[8]   Carbon Anode Materials for Advanced Sodium-Ion Batteries [J].
Hou, Hongshuai ;
Qiu, Xiaoqing ;
Wei, Weifeng ;
Zhang, Yun ;
Ji, Xiaobo .
ADVANCED ENERGY MATERIALS, 2017, 7 (24)
[9]   Carbon Quantum Dots and Their Derivative 3D Porous Carbon Frameworks for Sodium-Ion Batteries with Ultralong Cycle Life [J].
Hou, Hongshuai ;
Banks, Craig E. ;
Jing, Mingjun ;
Zhang, Yan ;
Ji, Xiaobo .
ADVANCED MATERIALS, 2015, 27 (47) :7861-7866
[10]   Hierarchical Porous Nitrogen-Doped Carbon Nanosheets Derived from Silk for Ultrahigh-Capacity Battery Anodes and Supercapacitors [J].
Hou, Jianhua ;
Cao, Chuanbao ;
Idrees, Faryal ;
Ma, Xilan .
ACS NANO, 2015, 9 (03) :2556-2564