Model-Agnostic Method for Thoracic Wall Segmentation in Fetal Ultrasound Videos

被引:33
作者
Shozu, Kanto [1 ,2 ]
Komatsu, Masaaki [1 ,3 ]
Sakai, Akira [4 ,5 ,6 ]
Komatsu, Reina [5 ,7 ]
Dozen, Ai [1 ]
Machino, Hidenori [1 ,3 ]
Yasutomi, Suguru [4 ,5 ]
Arakaki, Tatsuya [7 ]
Asada, Ken [1 ,3 ]
Kaneko, Syuzo [1 ,3 ]
Matsuoka, Ryu [5 ,7 ]
Nakashima, Akitoshi [2 ]
Sekizawa, Akihiko [7 ]
Hamamoto, Ryuji [1 ,3 ,6 ]
机构
[1] Natl Canc Ctr, Res Inst, Div Mol Modificat & Canc Biol, Chuo Ku, 5-1-1 Tsukiji, Tokyo 1040045, Japan
[2] Univ Toyama, Dept Obstet & Gynecol, 2630 Sugitani, Toyama 9300194, Japan
[3] RIKEN, Ctr Adv Intelligence Project, Canc Translat Res Team, Chuo Ku, 1-4-1 Nihonbashi, Tokyo 1030027, Japan
[4] Fujitsu Labs Ltd, Artificial Intelligence Lab, Nakahara Ku, 4-1-1 Kamikodanaka, Kawasaki, Kanagawa 2118588, Japan
[5] RIKEN, Ctr Adv Intelligence Project, AIP Fujitsu Collaborat Ctr, Chuo Ku, 1-4-1 Nihonbashi, Tokyo 1030027, Japan
[6] Tokyo Med & Dent Univ, Grad Sch Med & Dent Sci, Biomed Sci & Engn Track, Bunkyo Ku, 1-5-45 Yushima, Tokyo 1138510, Japan
[7] Showa Univ, Sch Med, Dept Obstet & Gynecol, Shinagawa Ku, 1-5-8 Hatanodai, Tokyo 1428666, Japan
关键词
deep learning; fetal ultrasound; prenatal diagnosis; thoracic wall segmentation; model-agnostic; ensemble learning; CARDIOTHORACIC RATIO; PRENATAL-DIAGNOSIS; IMAGE; GUIDELINES;
D O I
10.3390/biom10121691
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
The application of segmentation methods to medical imaging has the potential to create novel diagnostic support models. With respect to fetal ultrasound, the thoracic wall is a key structure on the assessment of the chest region for examiners to recognize the relative orientation and size of structures inside the thorax, which are critical components in neonatal prognosis. In this study, to improve the segmentation performance of the thoracic wall in fetal ultrasound videos, we proposed a novel model-agnostic method using deep learning techniques: the Multi-Frame + Cylinder method (MFCY). The Multi-frame method (MF) uses time-series information of ultrasound videos, and the Cylinder method (CY) utilizes the shape of the thoracic wall. To evaluate the achieved improvement, we performed segmentation using five-fold cross-validation on 538 ultrasound frames in the four-chamber view (4CV) of 256 normal cases using U-net and DeepLabv3+. MFCY increased the mean values of the intersection over union (IoU) of thoracic wall segmentation from 0.448 to 0.493 for U-net and from 0.417 to 0.470 for DeepLabv3+. These results demonstrated that MFCY improved the segmentation performance of the thoracic wall in fetal ultrasound videos without altering the network structure. MFCY is expected to facilitate the development of diagnostic support models in fetal ultrasound by providing further accurate segmentation of the thoracic wall.
引用
收藏
页码:1 / 16
页数:16
相关论文
共 37 条
  • [1] Medical Image Analysis using Convolutional Neural Networks: A Review
    Anwar, Syed Muhammad
    Majid, Muhammad
    Qayyum, Adnan
    Awais, Muhammad
    Alnowami, Majdi
    Khan, Muhammad Khurram
    [J]. JOURNAL OF MEDICAL SYSTEMS, 2018, 42 (11)
  • [2] Arnaout R., 2020, medRxiv, P2020, DOI [10.1101/2020.06.22.20137786, DOI 10.1101/2020.06.22.20137786]
  • [3] Assessment of the intraobserver variability in the measurement of fetal cardiothoracic ratio using ellipse and diameter methods
    Awadh, A. M. A.
    Prefumo, F.
    Bland, J. M.
    Carvalho, J. S.
    [J]. ULTRASOUND IN OBSTETRICS & GYNECOLOGY, 2006, 28 (01) : 53 - 56
  • [4] Bethune Michael, 2013, Australas J Ultrasound Med, V16, P98, DOI 10.1002/j.2205-0140.2013.tb00106.x
  • [5] Evaluation of an improved tool for non-invasive prediction of neonatal respiratory morbidity based on fully automated fetal lung ultrasound analysis
    Burgos-Artizzu, Xavier P.
    Perez-Moreno, Alvaro
    Coronado-Gutierrez, David
    Gratacos, Eduard
    Palacio, Montse
    [J]. SCIENTIFIC REPORTS, 2019, 9 (1)
  • [6] Dense-UNet: a novel multiphoton in vivo cellular image segmentation model based on a convolutional neural network
    Cai, Sijing
    Tian, Yunxian
    Lui, Harvey
    Zeng, Haishan
    Wu, Yi
    Chen, Guannan
    [J]. QUANTITATIVE IMAGING IN MEDICINE AND SURGERY, 2020, 10 (06) : 1275 - 1285
  • [7] ISUOG Practice Guidelines (updated): sonographic screening examination of the fetal heart
    Carvalho, J. S.
    Allan, L. D.
    Chaoui, R.
    Copel, J. A.
    DeVore, G. R.
    Hecher, K.
    Lee, W.
    Munoz, H.
    Paladini, D.
    Tutschek, B.
    Yagel, S.
    [J]. ULTRASOUND IN OBSTETRICS & GYNECOLOGY, 2013, 41 (03) : 348 - 359
  • [8] Prenatal diagnosis of pectus excavatum
    Cetin, Cihan
    Buyukkurt, Selim
    Sucu, Mete
    Ozsurmeli, Mehmet
    Demir, Cansun
    [J]. TURKISH JOURNAL OF OBSTETRICS AND GYNECOLOGY, 2016, 13 (03) : 158 - 160
  • [9] Encoder-Decoder with Atrous Separable Convolution for Semantic Image Segmentation
    Chen, Liang-Chieh
    Zhu, Yukun
    Papandreou, George
    Schroff, Florian
    Adam, Hartwig
    [J]. COMPUTER VISION - ECCV 2018, PT VII, 2018, 11211 : 833 - 851
  • [10] DeepLab: Semantic Image Segmentation with Deep Convolutional Nets, Atrous Convolution, and Fully Connected CRFs
    Chen, Liang-Chieh
    Papandreou, George
    Kokkinos, Iasonas
    Murphy, Kevin
    Yuille, Alan L.
    [J]. IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 2018, 40 (04) : 834 - 848